diff options
Diffstat (limited to 'src/libgeometry')
-rw-r--r-- | src/libgeometry/arith3.c | 215 | ||||
-rw-r--r-- | src/libgeometry/matrix.c | 106 | ||||
-rw-r--r-- | src/libgeometry/mkfile | 17 | ||||
-rw-r--r-- | src/libgeometry/qball.c | 66 | ||||
-rw-r--r-- | src/libgeometry/quaternion.c | 242 | ||||
-rw-r--r-- | src/libgeometry/transform.c | 75 | ||||
-rw-r--r-- | src/libgeometry/tstack.c | 169 |
7 files changed, 890 insertions, 0 deletions
diff --git a/src/libgeometry/arith3.c b/src/libgeometry/arith3.c new file mode 100644 index 00000000..8ab1755e --- /dev/null +++ b/src/libgeometry/arith3.c @@ -0,0 +1,215 @@ +#include <u.h> +#include <libc.h> +#include <draw.h> +#include <geometry.h> +/* + * Routines whose names end in 3 work on points in Affine 3-space. + * They ignore w in all arguments and produce w=1 in all results. + * Routines whose names end in 4 work on points in Projective 3-space. + */ +Point3 add3(Point3 a, Point3 b){ + a.x+=b.x; + a.y+=b.y; + a.z+=b.z; + a.w=1.; + return a; +} +Point3 sub3(Point3 a, Point3 b){ + a.x-=b.x; + a.y-=b.y; + a.z-=b.z; + a.w=1.; + return a; +} +Point3 neg3(Point3 a){ + a.x=-a.x; + a.y=-a.y; + a.z=-a.z; + a.w=1.; + return a; +} +Point3 div3(Point3 a, double b){ + a.x/=b; + a.y/=b; + a.z/=b; + a.w=1.; + return a; +} +Point3 mul3(Point3 a, double b){ + a.x*=b; + a.y*=b; + a.z*=b; + a.w=1.; + return a; +} +int eqpt3(Point3 p, Point3 q){ + return p.x==q.x && p.y==q.y && p.z==q.z; +} +/* + * Are these points closer than eps, in a relative sense + */ +int closept3(Point3 p, Point3 q, double eps){ + return 2.*dist3(p, q)<eps*(len3(p)+len3(q)); +} +double dot3(Point3 p, Point3 q){ + return p.x*q.x+p.y*q.y+p.z*q.z; +} +Point3 cross3(Point3 p, Point3 q){ + Point3 r; + r.x=p.y*q.z-p.z*q.y; + r.y=p.z*q.x-p.x*q.z; + r.z=p.x*q.y-p.y*q.x; + r.w=1.; + return r; +} +double len3(Point3 p){ + return sqrt(p.x*p.x+p.y*p.y+p.z*p.z); +} +double dist3(Point3 p, Point3 q){ + p.x-=q.x; + p.y-=q.y; + p.z-=q.z; + return sqrt(p.x*p.x+p.y*p.y+p.z*p.z); +} +Point3 unit3(Point3 p){ + double len=sqrt(p.x*p.x+p.y*p.y+p.z*p.z); + p.x/=len; + p.y/=len; + p.z/=len; + p.w=1.; + return p; +} +Point3 midpt3(Point3 p, Point3 q){ + p.x=.5*(p.x+q.x); + p.y=.5*(p.y+q.y); + p.z=.5*(p.z+q.z); + p.w=1.; + return p; +} +Point3 lerp3(Point3 p, Point3 q, double alpha){ + p.x+=(q.x-p.x)*alpha; + p.y+=(q.y-p.y)*alpha; + p.z+=(q.z-p.z)*alpha; + p.w=1.; + return p; +} +/* + * Reflect point p in the line joining p0 and p1 + */ +Point3 reflect3(Point3 p, Point3 p0, Point3 p1){ + Point3 a, b; + a=sub3(p, p0); + b=sub3(p1, p0); + return add3(a, mul3(b, 2*dot3(a, b)/dot3(b, b))); +} +/* + * Return the nearest point on segment [p0,p1] to point testp + */ +Point3 nearseg3(Point3 p0, Point3 p1, Point3 testp){ + double num, den; + Point3 q, r; + q=sub3(p1, p0); + r=sub3(testp, p0); + num=dot3(q, r);; + if(num<=0) return p0; + den=dot3(q, q); + if(num>=den) return p1; + return add3(p0, mul3(q, num/den)); +} +/* + * distance from point p to segment [p0,p1] + */ +#define SMALL 1e-8 /* what should this value be? */ +double pldist3(Point3 p, Point3 p0, Point3 p1){ + Point3 d, e; + double dd, de, dsq; + d=sub3(p1, p0); + e=sub3(p, p0); + dd=dot3(d, d); + de=dot3(d, e); + if(dd<SMALL*SMALL) return len3(e); + dsq=dot3(e, e)-de*de/dd; + if(dsq<SMALL*SMALL) return 0; + return sqrt(dsq); +} +/* + * vdiv3(a, b) is the magnitude of the projection of a onto b + * measured in units of the length of b. + * vrem3(a, b) is the component of a perpendicular to b. + */ +double vdiv3(Point3 a, Point3 b){ + return (a.x*b.x+a.y*b.y+a.z*b.z)/(b.x*b.x+b.y*b.y+b.z*b.z); +} +Point3 vrem3(Point3 a, Point3 b){ + double quo=(a.x*b.x+a.y*b.y+a.z*b.z)/(b.x*b.x+b.y*b.y+b.z*b.z); + a.x-=b.x*quo; + a.y-=b.y*quo; + a.z-=b.z*quo; + a.w=1.; + return a; +} +/* + * Compute face (plane) with given normal, containing a given point + */ +Point3 pn2f3(Point3 p, Point3 n){ + n.w=-dot3(p, n); + return n; +} +/* + * Compute face containing three points + */ +Point3 ppp2f3(Point3 p0, Point3 p1, Point3 p2){ + Point3 p01, p02; + p01=sub3(p1, p0); + p02=sub3(p2, p0); + return pn2f3(p0, cross3(p01, p02)); +} +/* + * Compute point common to three faces. + * Cramer's rule, yuk. + */ +Point3 fff2p3(Point3 f0, Point3 f1, Point3 f2){ + double det; + Point3 p; + det=dot3(f0, cross3(f1, f2)); + if(fabs(det)<SMALL){ /* parallel planes, bogus answer */ + p.x=0.; + p.y=0.; + p.z=0.; + p.w=0.; + return p; + } + p.x=(f0.w*(f2.y*f1.z-f1.y*f2.z) + +f1.w*(f0.y*f2.z-f2.y*f0.z)+f2.w*(f1.y*f0.z-f0.y*f1.z))/det; + p.y=(f0.w*(f2.z*f1.x-f1.z*f2.x) + +f1.w*(f0.z*f2.x-f2.z*f0.x)+f2.w*(f1.z*f0.x-f0.z*f1.x))/det; + p.z=(f0.w*(f2.x*f1.y-f1.x*f2.y) + +f1.w*(f0.x*f2.y-f2.x*f0.y)+f2.w*(f1.x*f0.y-f0.x*f1.y))/det; + p.w=1.; + return p; +} +/* + * pdiv4 does perspective division to convert a projective point to affine coordinates. + */ +Point3 pdiv4(Point3 a){ + if(a.w==0) return a; + a.x/=a.w; + a.y/=a.w; + a.z/=a.w; + a.w=1.; + return a; +} +Point3 add4(Point3 a, Point3 b){ + a.x+=b.x; + a.y+=b.y; + a.z+=b.z; + a.w+=b.w; + return a; +} +Point3 sub4(Point3 a, Point3 b){ + a.x-=b.x; + a.y-=b.y; + a.z-=b.z; + a.w-=b.w; + return a; +} diff --git a/src/libgeometry/matrix.c b/src/libgeometry/matrix.c new file mode 100644 index 00000000..2c372ef6 --- /dev/null +++ b/src/libgeometry/matrix.c @@ -0,0 +1,106 @@ +/* + * ident(m) store identity matrix in m + * matmul(a, b) matrix multiply a*=b + * matmulr(a, b) matrix multiply a=b*a + * determinant(m) returns det(m) + * adjoint(m, minv) minv=adj(m) + * invertmat(m, minv) invert matrix m, result in minv, returns det(m) + * if m is singular, minv=adj(m) + */ +#include <u.h> +#include <libc.h> +#include <draw.h> +#include <geometry.h> +void ident(Matrix m){ + register double *s=&m[0][0]; + *s++=1;*s++=0;*s++=0;*s++=0; + *s++=0;*s++=1;*s++=0;*s++=0; + *s++=0;*s++=0;*s++=1;*s++=0; + *s++=0;*s++=0;*s++=0;*s=1; +} +void matmul(Matrix a, Matrix b){ + int i, j, k; + double sum; + Matrix tmp; + for(i=0;i!=4;i++) for(j=0;j!=4;j++){ + sum=0; + for(k=0;k!=4;k++) + sum+=a[i][k]*b[k][j]; + tmp[i][j]=sum; + } + for(i=0;i!=4;i++) for(j=0;j!=4;j++) + a[i][j]=tmp[i][j]; +} +void matmulr(Matrix a, Matrix b){ + int i, j, k; + double sum; + Matrix tmp; + for(i=0;i!=4;i++) for(j=0;j!=4;j++){ + sum=0; + for(k=0;k!=4;k++) + sum+=b[i][k]*a[k][j]; + tmp[i][j]=sum; + } + for(i=0;i!=4;i++) for(j=0;j!=4;j++) + a[i][j]=tmp[i][j]; +} +/* + * Return det(m) + */ +double determinant(Matrix m){ + return m[0][0]*(m[1][1]*(m[2][2]*m[3][3]-m[2][3]*m[3][2])+ + m[1][2]*(m[2][3]*m[3][1]-m[2][1]*m[3][3])+ + m[1][3]*(m[2][1]*m[3][2]-m[2][2]*m[3][1])) + -m[0][1]*(m[1][0]*(m[2][2]*m[3][3]-m[2][3]*m[3][2])+ + m[1][2]*(m[2][3]*m[3][0]-m[2][0]*m[3][3])+ + m[1][3]*(m[2][0]*m[3][2]-m[2][2]*m[3][0])) + +m[0][2]*(m[1][0]*(m[2][1]*m[3][3]-m[2][3]*m[3][1])+ + m[1][1]*(m[2][3]*m[3][0]-m[2][0]*m[3][3])+ + m[1][3]*(m[2][0]*m[3][1]-m[2][1]*m[3][0])) + -m[0][3]*(m[1][0]*(m[2][1]*m[3][2]-m[2][2]*m[3][1])+ + m[1][1]*(m[2][2]*m[3][0]-m[2][0]*m[3][2])+ + m[1][2]*(m[2][0]*m[3][1]-m[2][1]*m[3][0])); +} +/* + * Store the adjoint (matrix of cofactors) of m in madj. + * Works fine even if m and madj are the same matrix. + */ +void adjoint(Matrix m, Matrix madj){ + double m00=m[0][0], m01=m[0][1], m02=m[0][2], m03=m[0][3]; + double m10=m[1][0], m11=m[1][1], m12=m[1][2], m13=m[1][3]; + double m20=m[2][0], m21=m[2][1], m22=m[2][2], m23=m[2][3]; + double m30=m[3][0], m31=m[3][1], m32=m[3][2], m33=m[3][3]; + madj[0][0]=m11*(m22*m33-m23*m32)+m21*(m13*m32-m12*m33)+m31*(m12*m23-m13*m22); + madj[0][1]=m01*(m23*m32-m22*m33)+m21*(m02*m33-m03*m32)+m31*(m03*m22-m02*m23); + madj[0][2]=m01*(m12*m33-m13*m32)+m11*(m03*m32-m02*m33)+m31*(m02*m13-m03*m12); + madj[0][3]=m01*(m13*m22-m12*m23)+m11*(m02*m23-m03*m22)+m21*(m03*m12-m02*m13); + madj[1][0]=m10*(m23*m32-m22*m33)+m20*(m12*m33-m13*m32)+m30*(m13*m22-m12*m23); + madj[1][1]=m00*(m22*m33-m23*m32)+m20*(m03*m32-m02*m33)+m30*(m02*m23-m03*m22); + madj[1][2]=m00*(m13*m32-m12*m33)+m10*(m02*m33-m03*m32)+m30*(m03*m12-m02*m13); + madj[1][3]=m00*(m12*m23-m13*m22)+m10*(m03*m22-m02*m23)+m20*(m02*m13-m03*m12); + madj[2][0]=m10*(m21*m33-m23*m31)+m20*(m13*m31-m11*m33)+m30*(m11*m23-m13*m21); + madj[2][1]=m00*(m23*m31-m21*m33)+m20*(m01*m33-m03*m31)+m30*(m03*m21-m01*m23); + madj[2][2]=m00*(m11*m33-m13*m31)+m10*(m03*m31-m01*m33)+m30*(m01*m13-m03*m11); + madj[2][3]=m00*(m13*m21-m11*m23)+m10*(m01*m23-m03*m21)+m20*(m03*m11-m01*m13); + madj[3][0]=m10*(m22*m31-m21*m32)+m20*(m11*m32-m12*m31)+m30*(m12*m21-m11*m22); + madj[3][1]=m00*(m21*m32-m22*m31)+m20*(m02*m31-m01*m32)+m30*(m01*m22-m02*m21); + madj[3][2]=m00*(m12*m31-m11*m32)+m10*(m01*m32-m02*m31)+m30*(m02*m11-m01*m12); + madj[3][3]=m00*(m11*m22-m12*m21)+m10*(m02*m21-m01*m22)+m20*(m01*m12-m02*m11); +} +/* + * Store the inverse of m in minv. + * If m is singular, minv is instead its adjoint. + * Returns det(m). + * Works fine even if m and minv are the same matrix. + */ +double invertmat(Matrix m, Matrix minv){ + double d, dinv; + int i, j; + d=determinant(m); + adjoint(m, minv); + if(d!=0.){ + dinv=1./d; + for(i=0;i!=4;i++) for(j=0;j!=4;j++) minv[i][j]*=dinv; + } + return d; +} diff --git a/src/libgeometry/mkfile b/src/libgeometry/mkfile new file mode 100644 index 00000000..6510104e --- /dev/null +++ b/src/libgeometry/mkfile @@ -0,0 +1,17 @@ +<$PLAN9/src/mkhdr + +LIB=libgeometry.a +OFILES=\ + arith3.$O\ + matrix.$O\ + qball.$O\ + quaternion.$O\ + transform.$O\ + tstack.$O\ + +HFILES=$PLAN9/include/geometry.h + +<$PLAN9/src/mksyslib + +listing:V: + pr mkfile $HFILES $CFILES|lp -du diff --git a/src/libgeometry/qball.c b/src/libgeometry/qball.c new file mode 100644 index 00000000..b73ecc51 --- /dev/null +++ b/src/libgeometry/qball.c @@ -0,0 +1,66 @@ +/* + * Ken Shoemake's Quaternion rotation controller + */ +#include <u.h> +#include <libc.h> +#include <draw.h> +#include <stdio.h> +#include <event.h> +#include <geometry.h> +#define BORDER 4 +static Point ctlcen; /* center of qball */ +static int ctlrad; /* radius of qball */ +static Quaternion *axis; /* constraint plane orientation, 0 if none */ +/* + * Convert a mouse point into a unit quaternion, flattening if + * constrained to a particular plane. + */ +static Quaternion mouseq(Point p){ + double qx=(double)(p.x-ctlcen.x)/ctlrad; + double qy=(double)(p.y-ctlcen.y)/ctlrad; + double rsq=qx*qx+qy*qy; + double l; + Quaternion q; + if(rsq>1){ + rsq=sqrt(rsq); + q.r=0.; + q.i=qx/rsq; + q.j=qy/rsq; + q.k=0.; + } + else{ + q.r=0.; + q.i=qx; + q.j=qy; + q.k=sqrt(1.-rsq); + } + if(axis){ + l=q.i*axis->i+q.j*axis->j+q.k*axis->k; + q.i-=l*axis->i; + q.j-=l*axis->j; + q.k-=l*axis->k; + l=sqrt(q.i*q.i+q.j*q.j+q.k*q.k); + if(l!=0.){ + q.i/=l; + q.j/=l; + q.k/=l; + } + } + return q; +} +void qball(Rectangle r, Mouse *m, Quaternion *result, void (*redraw)(void), Quaternion *ap){ + Quaternion q, down; + Point rad; + axis=ap; + ctlcen=divpt(addpt(r.min, r.max), 2); + rad=divpt(subpt(r.max, r.min), 2); + ctlrad=(rad.x<rad.y?rad.x:rad.y)-BORDER; + down=qinv(mouseq(m->xy)); + q=*result; + for(;;){ + *m=emouse(); + if(!m->buttons) break; + *result=qmul(q, qmul(down, mouseq(m->xy))); + (*redraw)(); + } +} diff --git a/src/libgeometry/quaternion.c b/src/libgeometry/quaternion.c new file mode 100644 index 00000000..1f920f5a --- /dev/null +++ b/src/libgeometry/quaternion.c @@ -0,0 +1,242 @@ +/* + * Quaternion arithmetic: + * qadd(q, r) returns q+r + * qsub(q, r) returns q-r + * qneg(q) returns -q + * qmul(q, r) returns q*r + * qdiv(q, r) returns q/r, can divide check. + * qinv(q) returns 1/q, can divide check. + * double qlen(p) returns modulus of p + * qunit(q) returns a unit quaternion parallel to q + * The following only work on unit quaternions and rotation matrices: + * slerp(q, r, a) returns q*(r*q^-1)^a + * qmid(q, r) slerp(q, r, .5) + * qsqrt(q) qmid(q, (Quaternion){1,0,0,0}) + * qtom(m, q) converts a unit quaternion q into a rotation matrix m + * mtoq(m) returns a quaternion equivalent to a rotation matrix m + */ +#include <u.h> +#include <libc.h> +#include <draw.h> +#include <geometry.h> +void qtom(Matrix m, Quaternion q){ +#ifndef new + m[0][0]=1-2*(q.j*q.j+q.k*q.k); + m[0][1]=2*(q.i*q.j+q.r*q.k); + m[0][2]=2*(q.i*q.k-q.r*q.j); + m[0][3]=0; + m[1][0]=2*(q.i*q.j-q.r*q.k); + m[1][1]=1-2*(q.i*q.i+q.k*q.k); + m[1][2]=2*(q.j*q.k+q.r*q.i); + m[1][3]=0; + m[2][0]=2*(q.i*q.k+q.r*q.j); + m[2][1]=2*(q.j*q.k-q.r*q.i); + m[2][2]=1-2*(q.i*q.i+q.j*q.j); + m[2][3]=0; + m[3][0]=0; + m[3][1]=0; + m[3][2]=0; + m[3][3]=1; +#else + /* + * Transcribed from Ken Shoemake's new code -- not known to work + */ + double Nq = q.r*q.r+q.i*q.i+q.j*q.j+q.k*q.k; + double s = (Nq > 0.0) ? (2.0 / Nq) : 0.0; + double xs = q.i*s, ys = q.j*s, zs = q.k*s; + double wx = q.r*xs, wy = q.r*ys, wz = q.r*zs; + double xx = q.i*xs, xy = q.i*ys, xz = q.i*zs; + double yy = q.j*ys, yz = q.j*zs, zz = q.k*zs; + m[0][0] = 1.0 - (yy + zz); m[1][0] = xy + wz; m[2][0] = xz - wy; + m[0][1] = xy - wz; m[1][1] = 1.0 - (xx + zz); m[2][1] = yz + wx; + m[0][2] = xz + wy; m[1][2] = yz - wx; m[2][2] = 1.0 - (xx + yy); + m[0][3] = m[1][3] = m[2][3] = m[3][0] = m[3][1] = m[3][2] = 0.0; + m[3][3] = 1.0; +#endif +} +Quaternion mtoq(Matrix mat){ +#ifndef new +#define EPS 1.387778780781445675529539585113525e-17 /* 2^-56 */ + double t; + Quaternion q; + q.r=0.; + q.i=0.; + q.j=0.; + q.k=1.; + if((t=.25*(1+mat[0][0]+mat[1][1]+mat[2][2]))>EPS){ + q.r=sqrt(t); + t=4*q.r; + q.i=(mat[1][2]-mat[2][1])/t; + q.j=(mat[2][0]-mat[0][2])/t; + q.k=(mat[0][1]-mat[1][0])/t; + } + else if((t=-.5*(mat[1][1]+mat[2][2]))>EPS){ + q.i=sqrt(t); + t=2*q.i; + q.j=mat[0][1]/t; + q.k=mat[0][2]/t; + } + else if((t=.5*(1-mat[2][2]))>EPS){ + q.j=sqrt(t); + q.k=mat[1][2]/(2*q.j); + } + return q; +#else + /* + * Transcribed from Ken Shoemake's new code -- not known to work + */ + /* This algorithm avoids near-zero divides by looking for a large + * component -- first r, then i, j, or k. When the trace is greater than zero, + * |r| is greater than 1/2, which is as small as a largest component can be. + * Otherwise, the largest diagonal entry corresponds to the largest of |i|, + * |j|, or |k|, one of which must be larger than |r|, and at least 1/2. + */ + Quaternion qu; + double tr, s; + + tr = mat[0][0] + mat[1][1] + mat[2][2]; + if (tr >= 0.0) { + s = sqrt(tr + mat[3][3]); + qu.r = s*0.5; + s = 0.5 / s; + qu.i = (mat[2][1] - mat[1][2]) * s; + qu.j = (mat[0][2] - mat[2][0]) * s; + qu.k = (mat[1][0] - mat[0][1]) * s; + } + else { + int i = 0; + if (mat[1][1] > mat[0][0]) i = 1; + if (mat[2][2] > mat[i][i]) i = 2; + switch(i){ + case 0: + s = sqrt( (mat[0][0] - (mat[1][1]+mat[2][2])) + mat[3][3] ); + qu.i = s*0.5; + s = 0.5 / s; + qu.j = (mat[0][1] + mat[1][0]) * s; + qu.k = (mat[2][0] + mat[0][2]) * s; + qu.r = (mat[2][1] - mat[1][2]) * s; + break; + case 1: + s = sqrt( (mat[1][1] - (mat[2][2]+mat[0][0])) + mat[3][3] ); + qu.j = s*0.5; + s = 0.5 / s; + qu.k = (mat[1][2] + mat[2][1]) * s; + qu.i = (mat[0][1] + mat[1][0]) * s; + qu.r = (mat[0][2] - mat[2][0]) * s; + break; + case 2: + s = sqrt( (mat[2][2] - (mat[0][0]+mat[1][1])) + mat[3][3] ); + qu.k = s*0.5; + s = 0.5 / s; + qu.i = (mat[2][0] + mat[0][2]) * s; + qu.j = (mat[1][2] + mat[2][1]) * s; + qu.r = (mat[1][0] - mat[0][1]) * s; + break; + } + } + if (mat[3][3] != 1.0){ + s=1/sqrt(mat[3][3]); + qu.r*=s; + qu.i*=s; + qu.j*=s; + qu.k*=s; + } + return (qu); +#endif +} +Quaternion qadd(Quaternion q, Quaternion r){ + q.r+=r.r; + q.i+=r.i; + q.j+=r.j; + q.k+=r.k; + return q; +} +Quaternion qsub(Quaternion q, Quaternion r){ + q.r-=r.r; + q.i-=r.i; + q.j-=r.j; + q.k-=r.k; + return q; +} +Quaternion qneg(Quaternion q){ + q.r=-q.r; + q.i=-q.i; + q.j=-q.j; + q.k=-q.k; + return q; +} +Quaternion qmul(Quaternion q, Quaternion r){ + Quaternion s; + s.r=q.r*r.r-q.i*r.i-q.j*r.j-q.k*r.k; + s.i=q.r*r.i+r.r*q.i+q.j*r.k-q.k*r.j; + s.j=q.r*r.j+r.r*q.j+q.k*r.i-q.i*r.k; + s.k=q.r*r.k+r.r*q.k+q.i*r.j-q.j*r.i; + return s; +} +Quaternion qdiv(Quaternion q, Quaternion r){ + return qmul(q, qinv(r)); +} +Quaternion qunit(Quaternion q){ + double l=qlen(q); + q.r/=l; + q.i/=l; + q.j/=l; + q.k/=l; + return q; +} +/* + * Bug?: takes no action on divide check + */ +Quaternion qinv(Quaternion q){ + double l=q.r*q.r+q.i*q.i+q.j*q.j+q.k*q.k; + q.r/=l; + q.i=-q.i/l; + q.j=-q.j/l; + q.k=-q.k/l; + return q; +} +double qlen(Quaternion p){ + return sqrt(p.r*p.r+p.i*p.i+p.j*p.j+p.k*p.k); +} +Quaternion slerp(Quaternion q, Quaternion r, double a){ + double u, v, ang, s; + double dot=q.r*r.r+q.i*r.i+q.j*r.j+q.k*r.k; + ang=dot<-1?PI:dot>1?0:acos(dot); /* acos gives NaN for dot slightly out of range */ + s=sin(ang); + if(s==0) return ang<PI/2?q:r; + u=sin((1-a)*ang)/s; + v=sin(a*ang)/s; + q.r=u*q.r+v*r.r; + q.i=u*q.i+v*r.i; + q.j=u*q.j+v*r.j; + q.k=u*q.k+v*r.k; + return q; +} +/* + * Only works if qlen(q)==qlen(r)==1 + */ +Quaternion qmid(Quaternion q, Quaternion r){ + double l; + q=qadd(q, r); + l=qlen(q); + if(l<1e-12){ + q.r=r.i; + q.i=-r.r; + q.j=r.k; + q.k=-r.j; + } + else{ + q.r/=l; + q.i/=l; + q.j/=l; + q.k/=l; + } + return q; +} +/* + * Only works if qlen(q)==1 + */ +static Quaternion qident={1,0,0,0}; +Quaternion qsqrt(Quaternion q){ + return qmid(q, qident); +} diff --git a/src/libgeometry/transform.c b/src/libgeometry/transform.c new file mode 100644 index 00000000..a5924872 --- /dev/null +++ b/src/libgeometry/transform.c @@ -0,0 +1,75 @@ +/* + * The following routines transform points and planes from one space + * to another. Points and planes are represented by their + * homogeneous coordinates, stored in variables of type Point3. + */ +#include <u.h> +#include <libc.h> +#include <draw.h> +#include <geometry.h> +/* + * Transform point p. + */ +Point3 xformpoint(Point3 p, Space *to, Space *from){ + Point3 q, r; + register double *m; + if(from){ + m=&from->t[0][0]; + q.x=*m++*p.x; q.x+=*m++*p.y; q.x+=*m++*p.z; q.x+=*m++*p.w; + q.y=*m++*p.x; q.y+=*m++*p.y; q.y+=*m++*p.z; q.y+=*m++*p.w; + q.z=*m++*p.x; q.z+=*m++*p.y; q.z+=*m++*p.z; q.z+=*m++*p.w; + q.w=*m++*p.x; q.w+=*m++*p.y; q.w+=*m++*p.z; q.w+=*m *p.w; + } + else + q=p; + if(to){ + m=&to->tinv[0][0]; + r.x=*m++*q.x; r.x+=*m++*q.y; r.x+=*m++*q.z; r.x+=*m++*q.w; + r.y=*m++*q.x; r.y+=*m++*q.y; r.y+=*m++*q.z; r.y+=*m++*q.w; + r.z=*m++*q.x; r.z+=*m++*q.y; r.z+=*m++*q.z; r.z+=*m++*q.w; + r.w=*m++*q.x; r.w+=*m++*q.y; r.w+=*m++*q.z; r.w+=*m *q.w; + } + else + r=q; + return r; +} +/* + * Transform point p with perspective division. + */ +Point3 xformpointd(Point3 p, Space *to, Space *from){ + p=xformpoint(p, to, from); + if(p.w!=0){ + p.x/=p.w; + p.y/=p.w; + p.z/=p.w; + p.w=1; + } + return p; +} +/* + * Transform plane p -- same as xformpoint, except multiply on the + * other side by the inverse matrix. + */ +Point3 xformplane(Point3 p, Space *to, Space *from){ + Point3 q, r; + register double *m; + if(from){ + m=&from->tinv[0][0]; + q.x =*m++*p.x; q.y =*m++*p.x; q.z =*m++*p.x; q.w =*m++*p.x; + q.x+=*m++*p.y; q.y+=*m++*p.y; q.z+=*m++*p.y; q.w+=*m++*p.y; + q.x+=*m++*p.z; q.y+=*m++*p.z; q.z+=*m++*p.z; q.w+=*m++*p.z; + q.x+=*m++*p.w; q.y+=*m++*p.w; q.z+=*m++*p.w; q.w+=*m *p.w; + } + else + q=p; + if(to){ + m=&to->t[0][0]; + r.x =*m++*q.x; r.y =*m++*q.x; r.z =*m++*q.x; r.w =*m++*q.x; + r.x+=*m++*q.y; r.y+=*m++*q.y; r.z+=*m++*q.y; r.w+=*m++*q.y; + r.x+=*m++*q.z; r.y+=*m++*q.z; r.z+=*m++*q.z; r.w+=*m++*q.z; + r.x+=*m++*q.w; r.y+=*m++*q.w; r.z+=*m++*q.w; r.w+=*m *q.w; + } + else + r=q; + return r; +} diff --git a/src/libgeometry/tstack.c b/src/libgeometry/tstack.c new file mode 100644 index 00000000..bc41c4ac --- /dev/null +++ b/src/libgeometry/tstack.c @@ -0,0 +1,169 @@ +/*% cc -gpc % + * These transformation routines maintain stacks of transformations + * and their inverses. + * t=pushmat(t) push matrix stack + * t=popmat(t) pop matrix stack + * rot(t, a, axis) multiply stack top by rotation + * qrot(t, q) multiply stack top by rotation, q is unit quaternion + * scale(t, x, y, z) multiply stack top by scale + * move(t, x, y, z) multiply stack top by translation + * xform(t, m) multiply stack top by m + * ixform(t, m, inv) multiply stack top by m. inv is the inverse of m. + * look(t, e, l, u) multiply stack top by viewing transformation + * persp(t, fov, n, f) multiply stack top by perspective transformation + * viewport(t, r, aspect) + * multiply stack top by window->viewport transformation. + */ +#include <u.h> +#include <libc.h> +#include <draw.h> +#include <geometry.h> +Space *pushmat(Space *t){ + Space *v; + v=malloc(sizeof(Space)); + if(t==0){ + ident(v->t); + ident(v->tinv); + } + else + *v=*t; + v->next=t; + return v; +} +Space *popmat(Space *t){ + Space *v; + if(t==0) return 0; + v=t->next; + free(t); + return v; +} +void rot(Space *t, double theta, int axis){ + double s=sin(radians(theta)), c=cos(radians(theta)); + Matrix m, inv; + int i=(axis+1)%3, j=(axis+2)%3; + ident(m); + m[i][i] = c; + m[i][j] = -s; + m[j][i] = s; + m[j][j] = c; + ident(inv); + inv[i][i] = c; + inv[i][j] = s; + inv[j][i] = -s; + inv[j][j] = c; + ixform(t, m, inv); +} +void qrot(Space *t, Quaternion q){ + Matrix m, inv; + int i, j; + qtom(m, q); + for(i=0;i!=4;i++) for(j=0;j!=4;j++) inv[i][j]=m[j][i]; + ixform(t, m, inv); +} +void scale(Space *t, double x, double y, double z){ + Matrix m, inv; + ident(m); + m[0][0]=x; + m[1][1]=y; + m[2][2]=z; + ident(inv); + inv[0][0]=1/x; + inv[1][1]=1/y; + inv[2][2]=1/z; + ixform(t, m, inv); +} +void move(Space *t, double x, double y, double z){ + Matrix m, inv; + ident(m); + m[0][3]=x; + m[1][3]=y; + m[2][3]=z; + ident(inv); + inv[0][3]=-x; + inv[1][3]=-y; + inv[2][3]=-z; + ixform(t, m, inv); +} +void xform(Space *t, Matrix m){ + Matrix inv; + if(invertmat(m, inv)==0) return; + ixform(t, m, inv); +} +void ixform(Space *t, Matrix m, Matrix inv){ + matmul(t->t, m); + matmulr(t->tinv, inv); +} +/* + * multiply the top of the matrix stack by a view-pointing transformation + * with the eyepoint at e, looking at point l, with u at the top of the screen. + * The coordinate system is deemed to be right-handed. + * The generated transformation transforms this view into a view from + * the origin, looking in the positive y direction, with the z axis pointing up, + * and x to the right. + */ +void look(Space *t, Point3 e, Point3 l, Point3 u){ + Matrix m, inv; + Point3 r; + l=unit3(sub3(l, e)); + u=unit3(vrem3(sub3(u, e), l)); + r=cross3(l, u); + /* make the matrix to transform from (rlu) space to (xyz) space */ + ident(m); + m[0][0]=r.x; m[0][1]=r.y; m[0][2]=r.z; + m[1][0]=l.x; m[1][1]=l.y; m[1][2]=l.z; + m[2][0]=u.x; m[2][1]=u.y; m[2][2]=u.z; + ident(inv); + inv[0][0]=r.x; inv[0][1]=l.x; inv[0][2]=u.x; + inv[1][0]=r.y; inv[1][1]=l.y; inv[1][2]=u.y; + inv[2][0]=r.z; inv[2][1]=l.z; inv[2][2]=u.z; + ixform(t, m, inv); + move(t, -e.x, -e.y, -e.z); +} +/* + * generate a transformation that maps the frustum with apex at the origin, + * apex angle=fov and clipping planes y=n and y=f into the double-unit cube. + * plane y=n maps to y'=-1, y=f maps to y'=1 + */ +int persp(Space *t, double fov, double n, double f){ + Matrix m; + double z; + if(n<=0 || f<=n || fov<=0 || 180<=fov) /* really need f!=n && sin(v)!=0 */ + return -1; + z=1/tan(radians(fov)/2); + m[0][0]=z; m[0][1]=0; m[0][2]=0; m[0][3]=0; + m[1][0]=0; m[1][1]=(f+n)/(f-n); m[1][2]=0; m[1][3]=f*(1-m[1][1]); + m[2][0]=0; m[2][1]=0; m[2][2]=z; m[2][3]=0; + m[3][0]=0; m[3][1]=1; m[3][2]=0; m[3][3]=0; + xform(t, m); + return 0; +} +/* + * Map the unit-cube window into the given screen viewport. + * r has min at the top left, max just outside the lower right. Aspect is the + * aspect ratio (dx/dy) of the viewport's pixels (not of the whole viewport!) + * The whole window is transformed to fit centered inside the viewport with equal + * slop on either top and bottom or left and right, depending on the viewport's + * aspect ratio. + * The window is viewed down the y axis, with x to the left and z up. The viewport + * has x increasing to the right and y increasing down. The window's y coordinates + * are mapped, unchanged, into the viewport's z coordinates. + */ +void viewport(Space *t, Rectangle r, double aspect){ + Matrix m; + double xc, yc, wid, hgt, scale; + xc=.5*(r.min.x+r.max.x); + yc=.5*(r.min.y+r.max.y); + wid=(r.max.x-r.min.x)*aspect; + hgt=r.max.y-r.min.y; + scale=.5*(wid<hgt?wid:hgt); + ident(m); + m[0][0]=scale; + m[0][3]=xc; + m[1][1]=0; + m[1][2]=-scale; + m[1][3]=yc; + m[2][1]=1; + m[2][2]=0; + /* should get inverse by hand */ + xform(t, m); +} |