diff options
author | Dan Cross <cross@gajendra.net> | 2020-01-10 14:44:21 +0000 |
---|---|---|
committer | Dan Cross <cross@gajendra.net> | 2020-01-10 14:54:30 +0000 |
commit | fa325e9b42b0bdfb48857d1958d9fb7ceac55151 (patch) | |
tree | 81d26256d152435135bcb1ae43121979a49f5f2b /src/libgeometry | |
parent | 77a0a5b5194d4441c86de097f2aae297cb75e2c2 (diff) | |
download | plan9port-fa325e9b42b0bdfb48857d1958d9fb7ceac55151.tar.gz plan9port-fa325e9b42b0bdfb48857d1958d9fb7ceac55151.tar.bz2 plan9port-fa325e9b42b0bdfb48857d1958d9fb7ceac55151.zip |
Trivial changes: whitespace and modes.
Remote whitespace at the ends of lines.
Remove blank lines from the ends of files.
Change modes on source files so that they
are not executable.
Signed-off-by: Dan Cross <cross@gajendra.net>
Diffstat (limited to 'src/libgeometry')
-rw-r--r-- | src/libgeometry/quaternion.c | 4 | ||||
-rw-r--r-- | src/libgeometry/tstack.c | 2 |
2 files changed, 3 insertions, 3 deletions
diff --git a/src/libgeometry/quaternion.c b/src/libgeometry/quaternion.c index 1f920f5a..0da22145 100644 --- a/src/libgeometry/quaternion.c +++ b/src/libgeometry/quaternion.c @@ -10,7 +10,7 @@ * qunit(q) returns a unit quaternion parallel to q * The following only work on unit quaternions and rotation matrices: * slerp(q, r, a) returns q*(r*q^-1)^a - * qmid(q, r) slerp(q, r, .5) + * qmid(q, r) slerp(q, r, .5) * qsqrt(q) qmid(q, (Quaternion){1,0,0,0}) * qtom(m, q) converts a unit quaternion q into a rotation matrix m * mtoq(m) returns a quaternion equivalent to a rotation matrix m @@ -93,7 +93,7 @@ Quaternion mtoq(Matrix mat){ */ Quaternion qu; double tr, s; - + tr = mat[0][0] + mat[1][1] + mat[2][2]; if (tr >= 0.0) { s = sqrt(tr + mat[3][3]); diff --git a/src/libgeometry/tstack.c b/src/libgeometry/tstack.c index bc41c4ac..a6cea994 100644 --- a/src/libgeometry/tstack.c +++ b/src/libgeometry/tstack.c @@ -1,6 +1,6 @@ /*% cc -gpc % * These transformation routines maintain stacks of transformations - * and their inverses. + * and their inverses. * t=pushmat(t) push matrix stack * t=popmat(t) pop matrix stack * rot(t, a, axis) multiply stack top by rotation |