aboutsummaryrefslogtreecommitdiff
path: root/man/man3/arith3.html
diff options
context:
space:
mode:
Diffstat (limited to 'man/man3/arith3.html')
-rw-r--r--man/man3/arith3.html216
1 files changed, 216 insertions, 0 deletions
diff --git a/man/man3/arith3.html b/man/man3/arith3.html
new file mode 100644
index 00000000..71cf815c
--- /dev/null
+++ b/man/man3/arith3.html
@@ -0,0 +1,216 @@
+<head>
+<title>arith3(3) - Plan 9 from User Space</title>
+<meta content="text/html; charset=utf-8" http-equiv=Content-Type>
+</head>
+<body bgcolor=#ffffff>
+<table border=0 cellpadding=0 cellspacing=0 width=100%>
+<tr height=10><td>
+<tr><td width=20><td>
+<tr><td width=20><td><b>ARITH3(3)</b><td align=right><b>ARITH3(3)</b>
+<tr><td width=20><td colspan=2>
+ <br>
+<p><font size=+1><b>NAME </b></font><br>
+
+<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
+
+ add3, sub3, neg3, div3, mul3, eqpt3, closept3, dot3, cross3, len3,
+ dist3, unit3, midpt3, lerp3, reflect3, nearseg3, pldist3, vdiv3,
+ vrem3, pn2f3, ppp2f3, fff2p3, pdiv4, add4, sub4 &ndash; operations on
+ 3-d points and planes<br>
+
+</table>
+<p><font size=+1><b>SYNOPSIS </b></font><br>
+
+<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+
+
+<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
+
+ <tt><font size=+1>#include &lt;draw.h&gt;
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+ </font></tt>
+ <tt><font size=+1>#include &lt;geometry.h&gt;
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+ </font></tt>
+ <tt><font size=+1>Point3 add3(Point3 a, Point3 b)
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+ </font></tt>
+ <tt><font size=+1>Point3 sub3(Point3 a, Point3 b)
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+ </font></tt>
+ <tt><font size=+1>Point3 neg3(Point3 a)
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+ </font></tt>
+ <tt><font size=+1>Point3 div3(Point3 a, double b)
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+ </font></tt>
+ <tt><font size=+1>Point3 mul3(Point3 a, double b)
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+ </font></tt>
+ <tt><font size=+1>int eqpt3(Point3 p, Point3 q)
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+ </font></tt>
+ <tt><font size=+1>int closept3(Point3 p, Point3 q, double eps)
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+ </font></tt>
+ <tt><font size=+1>double dot3(Point3 p, Point3 q)
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+ </font></tt>
+ <tt><font size=+1>Point3 cross3(Point3 p, Point3 q)
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+ </font></tt>
+ <tt><font size=+1>double len3(Point3 p)
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+ </font></tt>
+ <tt><font size=+1>double dist3(Point3 p, Point3 q)
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+ </font></tt>
+ <tt><font size=+1>Point3 unit3(Point3 p)
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+ </font></tt>
+ <tt><font size=+1>Point3 midpt3(Point3 p, Point3 q)
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+ </font></tt>
+ <tt><font size=+1>Point3 lerp3(Point3 p, Point3 q, double alpha)
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+ </font></tt>
+ <tt><font size=+1>Point3 reflect3(Point3 p, Point3 p0, Point3 p1)
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+ </font></tt>
+ <tt><font size=+1>Point3 nearseg3(Point3 p0, Point3 p1, Point3 testp)
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+ </font></tt>
+ <tt><font size=+1>double pldist3(Point3 p, Point3 p0, Point3 p1)
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+ </font></tt>
+ <tt><font size=+1>double vdiv3(Point3 a, Point3 b)
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+ </font></tt>
+ <tt><font size=+1>Point3 vrem3(Point3 a, Point3 b)
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+ </font></tt>
+ <tt><font size=+1>Point3 pn2f3(Point3 p, Point3 n)
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+ </font></tt>
+ <tt><font size=+1>Point3 ppp2f3(Point3 p0, Point3 p1, Point3 p2)
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+ </font></tt>
+ <tt><font size=+1>Point3 fff2p3(Point3 f0, Point3 f1, Point3 f2)
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+ </font></tt>
+ <tt><font size=+1>Point3 pdiv4(Point3 a)
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+ </font></tt>
+ <tt><font size=+1>Point3 add4(Point3 a, Point3 b)
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+ </font></tt>
+ <tt><font size=+1>Point3 sub4(Point3 a, Point3 b)<br>
+ </font></tt>
+</table>
+<p><font size=+1><b>DESCRIPTION </b></font><br>
+
+<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
+
+ These routines do arithmetic on points and planes in affine or
+ projective 3-space. Type <tt><font size=+1>Point3</font></tt> is<br>
+
+ <table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
+
+ <tt><font size=+1>typedef struct Point3 Point3;<br>
+ struct Point3{<br>
+
+ <table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
+
+ double x, y, z, w;<br>
+
+ </table>
+ };<br>
+
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+ </font></tt>
+
+ </table>
+ Routines whose names end in <tt><font size=+1>3</font></tt> operate on vectors or ordinary points
+ in affine 3-space, represented by their Euclidean <tt><font size=+1>(x,y,z)</font></tt> coordinates.
+ (They assume <tt><font size=+1>w=1</font></tt> in their arguments, and set <tt><font size=+1>w=1</font></tt> in their results.)<br>
+ Name&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Description<br>
+ <tt><font size=+1>add3</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Add the coordinates of two points.<br>
+ <tt><font size=+1>sub3</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Subtract coordinates of two points.<br>
+ <tt><font size=+1>neg3</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Negate the coordinates of a point.<br>
+ <tt><font size=+1>mul3</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Multiply coordinates by a scalar.<br>
+ <tt><font size=+1>div3</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Divide coordinates by a scalar.<br>
+ <tt><font size=+1>eqpt3</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Test two points for exact equality.<br>
+ <tt><font size=+1>closept3</font></tt>&nbsp;&nbsp;&nbsp;Is the distance between two points smaller than <i>eps</i>?<br>
+ <tt><font size=+1>dot3</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Dot product.<br>
+ <tt><font size=+1>cross3</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Cross product.<br>
+ <tt><font size=+1>len3</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Distance to the origin.<br>
+ <tt><font size=+1>dist3</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Distance between two points.<br>
+ <tt><font size=+1>unit3</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A unit vector parallel to <i>p</i>.<br>
+ <tt><font size=+1>midpt3</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The midpoint of line segment <i>pq</i>.<br>
+ <tt><font size=+1>lerp3</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Linear interpolation between <i>p</i> and <i>q</i>.<br>
+ <tt><font size=+1>reflect3</font></tt>&nbsp;&nbsp;&nbsp;The reflection of point <i>p</i> in the segment joining <i>p0</i> and
+ <i>p1</i>.<br>
+ <tt><font size=+1>nearseg3</font></tt>&nbsp;&nbsp;&nbsp;The closest point to <i>testp</i> on segment <i>p0 p1</i>.<br>
+ <tt><font size=+1>pldist3</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;The distance from <i>p</i> to segment <i>p0 p1</i>.<br>
+ <tt><font size=+1>vdiv3</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Vector divide -- the length of the component of <i>a</i> parallel
+ to <i>b</i>, in units of the length of <i>b</i>.<br>
+ <tt><font size=+1>vrem3</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Vector remainder -- the component of <i>a</i> perpendicular to <i>b</i>.
+ Ignoring roundoff, we have <tt><font size=+1>eqpt3(add3(mul3(b, vdiv3(a, b)), vrem3(a,
+ b)), a)</font></tt>.
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+
+ The following routines convert amongst various representations
+ of points and planes. Planes are represented identically to points,
+ by duality; a point <tt><font size=+1>p</font></tt> is on a plane <tt><font size=+1>q</font></tt> whenever <tt><font size=+1>p.x*q.x+p.y*q.y+p.z*q.z+p.w*q.w=0</font></tt>.
+ Although when dealing with affine points we assume <tt><font size=+1>p.w=1</font></tt>, we can&#8217;t
+ make the same
+ assumption for planes. The names of these routines are extra-cryptic.
+ They contain an <tt><font size=+1>f</font></tt> (for &#8216;face&#8217;) to indicate a plane, <tt><font size=+1>p</font></tt> for a point
+ and <tt><font size=+1>n</font></tt> for a normal vector. The number <tt><font size=+1>2</font></tt> abbreviates the word &#8216;to.&#8217;
+ The number <tt><font size=+1>3</font></tt> reminds us, as before, that we&#8217;re dealing with affine
+ points. Thus <tt><font size=+1>pn2f3</font></tt> takes a point and a normal
+ vector and returns the corresponding plane.<br>
+ Name&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Description<br>
+ <tt><font size=+1>pn2f3</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Compute the plane passing through <i>p</i> with normal <i>n</i>.<br>
+ <tt><font size=+1>ppp2f3</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Compute the plane passing through three points.<br>
+ <tt><font size=+1>fff2p3</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Compute the intersection point of three planes.
+ <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
+
+ The names of the following routines end in <tt><font size=+1>4</font></tt> because they operate
+ on points in projective 4-space, represented by their homogeneous
+ coordinates.<br>
+ pdiv4Perspective division. Divide <tt><font size=+1>p.w</font></tt> into <i>p</i>&#8217;s coordinates, converting
+ to affine coordinates. If <tt><font size=+1>p.w</font></tt> is zero, the result is the same
+ as the argument.<br>
+ add4&nbsp;&nbsp;&nbsp;Add the coordinates of two points.<br>
+ sub4&nbsp;&nbsp;&nbsp;Subtract the coordinates of two points.<br>
+
+</table>
+<p><font size=+1><b>SOURCE </b></font><br>
+
+<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
+
+ <tt><font size=+1>/usr/local/plan9/src/libgeometry<br>
+ </font></tt>
+</table>
+<p><font size=+1><b>SEE ALSO </b></font><br>
+
+<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
+
+ <a href="../man3/matrix.html"><i>matrix</i>(3)</a><br>
+
+</table>
+
+<td width=20>
+<tr height=20><td>
+</table>
+<!-- TRAILER -->
+<table border=0 cellpadding=0 cellspacing=0 width=100%>
+<tr height=15><td width=10><td><td width=10>
+<tr><td><td>
+<center>
+<a href="../../"><img src="../../dist/spaceglenda100.png" alt="Space Glenda" border=1></a>
+</center>
+</table>
+<!-- TRAILER -->
+</body></html>