diff options
Diffstat (limited to 'man/man3/quaternion.html')
-rw-r--r-- | man/man3/quaternion.html | 163 |
1 files changed, 0 insertions, 163 deletions
diff --git a/man/man3/quaternion.html b/man/man3/quaternion.html deleted file mode 100644 index 257ebe52..00000000 --- a/man/man3/quaternion.html +++ /dev/null @@ -1,163 +0,0 @@ -<head> -<title>quaternion(3) - Plan 9 from User Space</title> -<meta content="text/html; charset=utf-8" http-equiv=Content-Type> -</head> -<body bgcolor=#ffffff> -<table border=0 cellpadding=0 cellspacing=0 width=100%> -<tr height=10><td> -<tr><td width=20><td> -<tr><td width=20><td><b>QUATERNION(3)</b><td align=right><b>QUATERNION(3)</b> -<tr><td width=20><td colspan=2> - <br> -<p><font size=+1><b>NAME </b></font><br> - -<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td> - - qtom, mtoq, qadd, qsub, qneg, qmul, qdiv, qunit, qinv, qlen, slerp, - qmid, qsqrt – Quaternion arithmetic<br> - -</table> -<p><font size=+1><b>SYNOPSIS </b></font><br> - -<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table> - - -<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td> - - <tt><font size=+1>#include <draw.h> - <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table> - </font></tt> - <tt><font size=+1>#include <geometry.h> - <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table> - </font></tt> - <tt><font size=+1>Quaternion qadd(Quaternion q, Quaternion r) - <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table> - </font></tt> - <tt><font size=+1>Quaternion qsub(Quaternion q, Quaternion r) - <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table> - </font></tt> - <tt><font size=+1>Quaternion qneg(Quaternion q) - <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table> - </font></tt> - <tt><font size=+1>Quaternion qmul(Quaternion q, Quaternion r) - <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table> - </font></tt> - <tt><font size=+1>Quaternion qdiv(Quaternion q, Quaternion r) - <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table> - </font></tt> - <tt><font size=+1>Quaternion qinv(Quaternion q) - <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table> - </font></tt> - <tt><font size=+1>double qlen(Quaternion p) - <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table> - </font></tt> - <tt><font size=+1>Quaternion qunit(Quaternion q) - <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table> - </font></tt> - <tt><font size=+1>void qtom(Matrix m, Quaternion q) - <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table> - </font></tt> - <tt><font size=+1>Quaternion mtoq(Matrix mat) - <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table> - </font></tt> - <tt><font size=+1>Quaternion slerp(Quaternion q, Quaternion r, double a) - <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table> - </font></tt> - <tt><font size=+1>Quaternion qmid(Quaternion q, Quaternion r) - <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table> - </font></tt> - <tt><font size=+1>Quaternion qsqrt(Quaternion q)<br> - </font></tt> -</table> -<p><font size=+1><b>DESCRIPTION </b></font><br> - -<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td> - - The Quaternions are a non-commutative extension field of the Real - numbers, designed to do for rotations in 3-space what the complex - numbers do for rotations in 2-space. Quaternions have a real component - <i>r</i> and an imaginary vector component <i>v</i>=(<i>i</i>,<i>j</i>,<i>k</i>). Quaternions add - componentwise and multiply according to - the rule (<i>r</i>,<i>v</i>)(<i>s</i>,<i>w</i>)=(<i>rs</i>-<i>v</i>.<i>w</i>, <i>rw</i>+<i>vs</i>+<i>v</i>x<i>w</i>), where . and x are the ordinary - vector dot and cross products. The multiplicative inverse of a - non-zero quaternion (<i>r</i>,<i>v</i>) is (<i>r</i>,<i>-v</i>)/(<i>r</i>2-<i>v</i>.<i>v</i>). - <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table> - - The following routines do arithmetic on quaternions, represented - as<br> - - <table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td> - - <tt><font size=+1>typedef struct Quaternion Quaternion;<br> - struct Quaternion{<br> - - <table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td> - - double r, i, j, k;<br> - - </table> - };<br> - </font></tt> - </table> - Name Description<br> - <tt><font size=+1>qadd</font></tt> Add two quaternions.<br> - <tt><font size=+1>qsub</font></tt> Subtract two quaternions.<br> - <tt><font size=+1>qneg</font></tt> Negate a quaternion.<br> - <tt><font size=+1>qmul</font></tt> Multiply two quaternions.<br> - <tt><font size=+1>qdiv</font></tt> Divide two quaternions.<br> - <tt><font size=+1>qinv</font></tt> Return the multiplicative inverse of a quaternion.<br> - <tt><font size=+1>qlen</font></tt> Return <tt><font size=+1>sqrt(q.r*q.r+q.i*q.i+q.j*q.j+q.k*q.k)</font></tt>, the length of - a quaternion.<br> - <tt><font size=+1>qunit</font></tt> Return a unit quaternion (<i>length=1</i>) with components proportional - to <i>q</i>’s. - <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table> - - A rotation by angle <i>θ</i> about axis <i>A</i> (where <i>A</i> is a unit vector) - can be represented by the unit quaternion <i>q</i>=(cos <i>θ</i>/2, <i>A</i>sin <i>θ</i>/2). - The same rotation is represented by -<i>q</i>; a rotation by -<i>θ</i> about -<i>A</i> - is the same as a rotation by <i>θ</i> about <i>A</i>. The quaternion <i>q</i> transforms - points by (0,<i>x’,y’,z’</i>) = <i>q</i>-1(0,<i>x,y,z</i>)<i>q</i>. Quaternion - multiplication composes rotations. The orientation of an object - in 3-space can be represented by a quaternion giving its rotation - relative to some ‘standard’ orientation. - <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table> - - The following routines operate on rotations or orientations represented - as unit quaternions:<br> - <tt><font size=+1>mtoq</font></tt> Convert a rotation matrix (see <a href="../man3/matrix.html"><i>matrix</i>(3)</a>) to a unit quaternion.<br> - <tt><font size=+1>qtom</font></tt> Convert a unit quaternion to a rotation matrix.<br> - <tt><font size=+1>slerp</font></tt> Spherical lerp. Interpolate between two orientations. The - rotation that carries <i>q</i> to <i>r</i> is <i>q</i>-1<i>r</i>, so <tt><font size=+1>slerp(q, r, t)</font></tt> is <i>q</i>(<i>q</i>-1<i>r</i>)<i>t</i>.<br> - <tt><font size=+1>qmid slerp(q, r, .5)<br> - qsqrt</font></tt> The square root of <i>q</i>. This is just a rotation about the same - axis by half the angle.<br> - -</table> -<p><font size=+1><b>SOURCE </b></font><br> - -<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td> - - <tt><font size=+1>/usr/local/plan9/src/libgeometry/quaternion.c<br> - </font></tt> -</table> -<p><font size=+1><b>SEE ALSO </b></font><br> - -<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td> - - <a href="../man3/matrix.html"><i>matrix</i>(3)</a>, <a href="../man3/qball.html"><i>qball</i>(3)</a><br> - -</table> - -<td width=20> -<tr height=20><td> -</table> -<!-- TRAILER --> -<table border=0 cellpadding=0 cellspacing=0 width=100%> -<tr height=15><td width=10><td><td width=10> -<tr><td><td> -<center> -<a href="../../"><img src="../../dist/spaceglenda100.png" alt="Space Glenda" border=1></a> -</center> -</table> -<!-- TRAILER --> -</body></html> |