aboutsummaryrefslogtreecommitdiff
path: root/man/man3/quaternion.html
diff options
context:
space:
mode:
Diffstat (limited to 'man/man3/quaternion.html')
-rw-r--r--man/man3/quaternion.html163
1 files changed, 0 insertions, 163 deletions
diff --git a/man/man3/quaternion.html b/man/man3/quaternion.html
deleted file mode 100644
index 257ebe52..00000000
--- a/man/man3/quaternion.html
+++ /dev/null
@@ -1,163 +0,0 @@
-<head>
-<title>quaternion(3) - Plan 9 from User Space</title>
-<meta content="text/html; charset=utf-8" http-equiv=Content-Type>
-</head>
-<body bgcolor=#ffffff>
-<table border=0 cellpadding=0 cellspacing=0 width=100%>
-<tr height=10><td>
-<tr><td width=20><td>
-<tr><td width=20><td><b>QUATERNION(3)</b><td align=right><b>QUATERNION(3)</b>
-<tr><td width=20><td colspan=2>
- <br>
-<p><font size=+1><b>NAME </b></font><br>
-
-<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
-
- qtom, mtoq, qadd, qsub, qneg, qmul, qdiv, qunit, qinv, qlen, slerp,
- qmid, qsqrt &ndash; Quaternion arithmetic<br>
-
-</table>
-<p><font size=+1><b>SYNOPSIS </b></font><br>
-
-<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
-
-
-<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
-
- <tt><font size=+1>#include &lt;draw.h&gt;
- <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
- </font></tt>
- <tt><font size=+1>#include &lt;geometry.h&gt;
- <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
- </font></tt>
- <tt><font size=+1>Quaternion qadd(Quaternion q, Quaternion r)
- <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
- </font></tt>
- <tt><font size=+1>Quaternion qsub(Quaternion q, Quaternion r)
- <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
- </font></tt>
- <tt><font size=+1>Quaternion qneg(Quaternion q)
- <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
- </font></tt>
- <tt><font size=+1>Quaternion qmul(Quaternion q, Quaternion r)
- <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
- </font></tt>
- <tt><font size=+1>Quaternion qdiv(Quaternion q, Quaternion r)
- <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
- </font></tt>
- <tt><font size=+1>Quaternion qinv(Quaternion q)
- <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
- </font></tt>
- <tt><font size=+1>double qlen(Quaternion p)
- <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
- </font></tt>
- <tt><font size=+1>Quaternion qunit(Quaternion q)
- <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
- </font></tt>
- <tt><font size=+1>void qtom(Matrix m, Quaternion q)
- <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
- </font></tt>
- <tt><font size=+1>Quaternion mtoq(Matrix mat)
- <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
- </font></tt>
- <tt><font size=+1>Quaternion slerp(Quaternion q, Quaternion r, double a)
- <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
- </font></tt>
- <tt><font size=+1>Quaternion qmid(Quaternion q, Quaternion r)
- <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
- </font></tt>
- <tt><font size=+1>Quaternion qsqrt(Quaternion q)<br>
- </font></tt>
-</table>
-<p><font size=+1><b>DESCRIPTION </b></font><br>
-
-<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
-
- The Quaternions are a non-commutative extension field of the Real
- numbers, designed to do for rotations in 3-space what the complex
- numbers do for rotations in 2-space. Quaternions have a real component
- <i>r</i> and an imaginary vector component <i>v</i>=(<i>i</i>,<i>j</i>,<i>k</i>). Quaternions add
- componentwise and multiply according to
- the rule (<i>r</i>,<i>v</i>)(<i>s</i>,<i>w</i>)=(<i>rs</i>-<i>v</i>.<i>w</i>, <i>rw</i>+<i>vs</i>+<i>v</i>x<i>w</i>), where . and x are the ordinary
- vector dot and cross products. The multiplicative inverse of a
- non-zero quaternion (<i>r</i>,<i>v</i>) is (<i>r</i>,<i>-v</i>)/(<i>r</i>2-<i>v</i>.<i>v</i>).
- <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
-
- The following routines do arithmetic on quaternions, represented
- as<br>
-
- <table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
-
- <tt><font size=+1>typedef struct Quaternion Quaternion;<br>
- struct Quaternion{<br>
-
- <table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
-
- double r, i, j, k;<br>
-
- </table>
- };<br>
- </font></tt>
- </table>
- Name&nbsp;&nbsp;&nbsp;&nbsp;Description<br>
- <tt><font size=+1>qadd</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;Add two quaternions.<br>
- <tt><font size=+1>qsub</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;Subtract two quaternions.<br>
- <tt><font size=+1>qneg</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;Negate a quaternion.<br>
- <tt><font size=+1>qmul</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;Multiply two quaternions.<br>
- <tt><font size=+1>qdiv</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;Divide two quaternions.<br>
- <tt><font size=+1>qinv</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;Return the multiplicative inverse of a quaternion.<br>
- <tt><font size=+1>qlen</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;Return <tt><font size=+1>sqrt(q.r*q.r+q.i*q.i+q.j*q.j+q.k*q.k)</font></tt>, the length of
- a quaternion.<br>
- <tt><font size=+1>qunit</font></tt>&nbsp;&nbsp;&nbsp;Return a unit quaternion (<i>length=1</i>) with components proportional
- to <i>q</i>&#8217;s.
- <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
-
- A rotation by angle <i>&#952;</i> about axis <i>A</i> (where <i>A</i> is a unit vector)
- can be represented by the unit quaternion <i>q</i>=(cos <i>&#952;</i>/2, <i>A</i>sin <i>&#952;</i>/2).
- The same rotation is represented by -<i>q</i>; a rotation by -<i>&#952;</i> about -<i>A</i>
- is the same as a rotation by <i>&#952;</i> about <i>A</i>. The quaternion <i>q</i> transforms
- points by (0,<i>x&#8217;,y&#8217;,z&#8217;</i>) = <i>q</i>-1(0,<i>x,y,z</i>)<i>q</i>. Quaternion
- multiplication composes rotations. The orientation of an object
- in 3-space can be represented by a quaternion giving its rotation
- relative to some &#8216;standard&#8217; orientation.
- <table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
-
- The following routines operate on rotations or orientations represented
- as unit quaternions:<br>
- <tt><font size=+1>mtoq</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;Convert a rotation matrix (see <a href="../man3/matrix.html"><i>matrix</i>(3)</a>) to a unit quaternion.<br>
- <tt><font size=+1>qtom</font></tt>&nbsp;&nbsp;&nbsp;&nbsp;Convert a unit quaternion to a rotation matrix.<br>
- <tt><font size=+1>slerp</font></tt>&nbsp;&nbsp;&nbsp;Spherical lerp. Interpolate between two orientations. The
- rotation that carries <i>q</i> to <i>r</i> is <i>q</i>-1<i>r</i>, so <tt><font size=+1>slerp(q, r, t)</font></tt> is <i>q</i>(<i>q</i>-1<i>r</i>)<i>t</i>.<br>
- <tt><font size=+1>qmid&nbsp;&nbsp;&nbsp;&nbsp;slerp(q, r, .5)<br>
- qsqrt</font></tt>&nbsp;&nbsp;&nbsp;The square root of <i>q</i>. This is just a rotation about the same
- axis by half the angle.<br>
-
-</table>
-<p><font size=+1><b>SOURCE </b></font><br>
-
-<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
-
- <tt><font size=+1>/usr/local/plan9/src/libgeometry/quaternion.c<br>
- </font></tt>
-</table>
-<p><font size=+1><b>SEE ALSO </b></font><br>
-
-<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
-
- <a href="../man3/matrix.html"><i>matrix</i>(3)</a>, <a href="../man3/qball.html"><i>qball</i>(3)</a><br>
-
-</table>
-
-<td width=20>
-<tr height=20><td>
-</table>
-<!-- TRAILER -->
-<table border=0 cellpadding=0 cellspacing=0 width=100%>
-<tr height=15><td width=10><td><td width=10>
-<tr><td><td>
-<center>
-<a href="../../"><img src="../../dist/spaceglenda100.png" alt="Space Glenda" border=1></a>
-</center>
-</table>
-<!-- TRAILER -->
-</body></html>