aboutsummaryrefslogtreecommitdiff
path: root/man/man3/mp.3
blob: c4ecb378ce16a55cc5a4638deb1c5ab483ac2236 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
.TH MP 3
.SH NAME
mpsetminbits, mpnew, mpfree, mpbits, mpnorm, mpcopy, mpassign, mprand, strtomp, mpfmt,mptoa, betomp, mptobe, letomp, mptole, mptoui, uitomp, mptoi, itomp, uvtomp, mptouv, vtomp, mptov, mpdigdiv, mpadd, mpsub, mpleft, mpright, mpmul, mpexp, mpmod, mpdiv, mpcmp, mpextendedgcd, mpinvert, mpsignif, mplowbits0, mpvecdigmuladd, mpvecdigmulsub, mpvecadd, mpvecsub, mpveccmp, mpvecmul, mpmagcmp, mpmagadd, mpmagsub, crtpre, crtin, crtout, crtprefree, crtresfree, mpfactorial \- extended precision arithmetic
.SH SYNOPSIS
.B #include <u.h>
.br
.B #include <libc.h>
.br
.B #include <mp.h>
.PP
.B
mpint*	mpnew(int n)
.PP
.B
void	mpfree(mpint *b)
.PP
.B
void	mpsetminbits(int n)
.PP
.B
void	mpbits(mpint *b, int n)
.PP
.B
void	mpnorm(mpint *b)
.PP
.B
mpint*	mpcopy(mpint *b)
.PP
.B
void	mpassign(mpint *old, mpint *new)
.PP
.B
mpint*	mprand(int bits, void (*gen)(uchar*, int), mpint *b)
.PP
.B
mpint*	strtomp(char *buf, char **rptr, int base, mpint *b)
.PP
.B
char*	mptoa(mpint *b, int base, char *buf, int blen)
.PP
.B
int	mpfmt(Fmt*)
.PP
.B
mpint*	betomp(uchar *buf, uint blen, mpint *b)
.PP
.B
int	mptobe(mpint *b, uchar *buf, uint blen, uchar **bufp)
.PP
.B
mpint*	letomp(uchar *buf, uint blen, mpint *b)
.PP
.B
int	mptole(mpint *b, uchar *buf, uint blen, uchar **bufp)
.PP
.B
uint	mptoui(mpint*)
.PP
.B
mpint*	uitomp(uint, mpint*)
.PP
.B
int	mptoi(mpint*)
.PP
.B
mpint*	itomp(int, mpint*)
.PP
.B
mpint*	vtomp(vlong, mpint*)
.PP
.B
vlong	mptov(mpint*)
.PP
.B
mpint*	uvtomp(uvlong, mpint*)
.PP
.B
uvlong	mptouv(mpint*)
.PP
.B
void	mpadd(mpint *b1, mpint *b2, mpint *sum)
.PP
.B
void	mpmagadd(mpint *b1, mpint *b2, mpint *sum)
.PP
.B
void	mpsub(mpint *b1, mpint *b2, mpint *diff)
.PP
.B
void	mpmagsub(mpint *b1, mpint *b2, mpint *diff)
.PP
.B
void	mpleft(mpint *b, int shift, mpint *res)
.PP
.B
void	mpright(mpint *b, int shift, mpint *res)
.PP
.B
void	mpmul(mpint *b1, mpint *b2, mpint *prod)
.PP
.B
void	mpexp(mpint *b, mpint *e, mpint *m, mpint *res)
.PP
.B
void	mpmod(mpint *b, mpint *m, mpint *remainder)
.PP
.B
void	mpdiv(mpint *dividend, mpint *divisor,  mpint *quotient, mpint *remainder)
.PP
.B
int	mpcmp(mpint *b1, mpint *b2)
.PP
.B
int	mpmagcmp(mpint *b1, mpint *b2)
.PP
.B
void	mpextendedgcd(mpint *a, mpint *b, mpint *d, mpint *x, mpint *y)
.PP
.B
void	mpinvert(mpint *b, mpint *m, mpint *res)
.PP
.B
int	mpsignif(mpint *b)
.PP
.B
int	mplowbits0(mpint *b)
.PP
.B
void	mpdigdiv(mpdigit *dividend, mpdigit divisor, mpdigit *quotient)
.PP
.B
void	mpvecadd(mpdigit *a, int alen, mpdigit *b, int blen, mpdigit *sum)
.PP
.B
void	mpvecsub(mpdigit *a, int alen, mpdigit *b, int blen, mpdigit *diff)
.PP
.B
void	mpvecdigmuladd(mpdigit *b, int n, mpdigit m, mpdigit *p)
.PP
.B
int	mpvecdigmulsub(mpdigit *b, int n, mpdigit m, mpdigit *p)
.PP
.B
void	mpvecmul(mpdigit *a, int alen, mpdigit *b, int blen, mpdigit *p)
.PP
.B
int	mpveccmp(mpdigit *a, int alen, mpdigit *b, int blen)
.PP
.B
CRTpre*	crtpre(int nfactors, mpint **factors)
.PP
.B
CRTres*	crtin(CRTpre *crt, mpint *x)
.PP
.B
void	crtout(CRTpre *crt, CRTres *r, mpint *x)
.PP
.B
void	crtprefree(CRTpre *cre)
.PP
.B
void	crtresfree(CRTres *res)
.PP
.B
mpint*	mpfactorial(ulong n)
.PP
.B
mpint	*mpzero, *mpone, *mptwo
.SH DESCRIPTION
.PP
These routines perform extended precision integer arithmetic.
The basic type is
.BR mpint ,
which points to an array of
.BR mpdigit s,
stored in little-endian order:
.sp
.EX
typedef struct mpint mpint;
struct mpint
{
	int	sign;   /* +1 or -1 */
	int	size;   /* allocated digits */
	int	top;    /* significant digits */
	mpdigit	*p;
	char	flags;
};
.EE
.PP
The sign of 0 is +1.
.PP
The size of
.B mpdigit
is architecture-dependent and defined in
.BR /$cputype/include/u.h .
.BR Mpint s
are dynamically allocated and must be explicitly freed.  Operations
grow the array of digits as needed.
.PP
In general, the result parameters are last in the
argument list.
.PP
Routines that return an
.B mpint
will allocate the
.B mpint
if the result parameter is
.BR nil .
This includes
.IR strtomp ,
.IR itomp ,
.IR uitomp ,
and
.IR btomp .
These functions, in addition to
.I mpnew
and
.IR mpcopy ,
will return
.B nil
if the allocation fails.
.PP
Input and result parameters may point to the same
.BR mpint .
The routines check and copy where necessary.
.PP
.I Mpnew
creates an
.B mpint
with an initial allocation of
.I n
bits.
If
.I n
is zero, the allocation will be whatever was specified in the
last call to
.I mpsetminbits
or to the initial value, 1056.
.I Mpfree
frees an
.BR mpint .
.I Mpbits
grows the allocation of
.I b
to fit at least
.I n
bits.  If
.B b->top
doesn't cover
.I n
bits it increases it to do so.
Unless you are writing new basic operations, you
can restrict yourself to
.B mpnew(0)
and
.BR mpfree(b) .
.PP
.I Mpnorm
normalizes the representation by trimming any high order zero
digits.  All routines except
.B mpbits
return normalized results.
.PP
.I Mpcopy
creates a new
.B mpint
with the same value as
.I b
while
.I mpassign
sets the value of
.I new
to be that of
.IR old .
.PP
.I Mprand
creates an
.I n
bit random number using the generator
.IR gen .
.I Gen
takes a pointer to a string of uchar's and the number
to fill in.
.PP
.I Strtomp
and
.I mptoa
convert between
.SM ASCII
and
.B mpint
representations using the base indicated.
Only the bases 10, 16, 32, and 64 are
supported.  Anything else defaults to 16.
.IR Strtomp
skips any leading spaces or tabs.
.IR Strtomp 's
scan stops when encountering a digit not valid in the
base.  If
.I rptr
is not zero,
.I *rptr
is set to point to the character immediately after the
string converted.
If the parse pterminates before any digits are found,
.I strtomp
return
.BR nil .
.I Mptoa
returns a pointer to the filled buffer.
If the parameter
.I buf
is
.BR nil ,
the buffer is allocated.
.I Mpfmt
can be used with
.IR fmtinstall (3)
and
.IR print (3)
to print hexadecimal representations of
.BR mpint s.
.PP
.I Mptobe
and
.I mptole
convert an
.I mpint
to a byte array.  The former creates a big endian representation,
the latter a little endian one.
If the destination
.I buf
is not
.BR nil ,
it specifies the buffer of length
.I blen
for the result.  If the representation
is less than
.I blen
bytes, the rest of the buffer is zero filled.
If
.I buf
is
.BR nil ,
then a buffer is allocated and a pointer to it is
deposited in the location pointed to by
.IR bufp .
Sign is ignored in these conversions, i.e., the byte
array version is always positive.
.PP
.IR Betomp ,
and
.I letomp
convert from a big or little endian byte array at
.I buf
of length
.I blen
to an
.IR mpint .
If
.I b
is not
.IR nil ,
it refers to a preallocated
.I mpint
for the result.
If
.I b
is
.BR nil ,
a new integer is allocated and returned as the result.
.PP
The integer conversions are:
.TF Mptouv
.TP
.I mptoui
.BR mpint -> "unsigned int"
.TP
.I uitomp
.BR "unsigned int" -> mpint
.TP
.I mptoi
.BR mpint -> "int"
.TP
.I itomp
.BR "int" -> mpint
.TP
.I mptouv
.BR mpint -> "unsigned vlong"
.TP
.I uvtomp
.BR "unsigned vlong" -> mpint
.TP
.I mptov
.BR mpint -> "vlong"
.TP
.I vtomp
.BR "vlong" -> mpint
.PD
.PP
When converting to the base integer types, if the integer is too large,
the largest integer of the appropriate sign
and size is returned.
.PP
The mathematical functions are:
.TF mpmagadd
.TP
.I mpadd
.BR "sum = b1 + b2" .
.TP
.I mpmagadd
.BR "sum = abs(b1) + abs(b2)" . 
.TP
.I mpsub
.BR "diff = b1 - b2" .
.TP
.I mpmagsub
.BR "diff = abs(b1) - abs(b2)" .
.TP
.I mpleft
.BR "res = b<<shift" .
.TP
.I mpright
.BR "res = b>>shift" .
.TP
.I mpmul
.BR "prod = b1*b2" .
.TP
.I mpexp
if
.I m
is nil,
.BR "res = b**e" .
Otherwise,
.BR "res = b**e mod m" .
.TP
.I mpmod
.BR "remainder = b % m" .
.TP
.I mpdiv
.BR "quotient = dividend/divisor" .
.BR "remainder = dividend % divisor" .
.TP
.I mpcmp
returns -1, 0, or +1 as
.I b1
is less than, equal to, or greater than
.IR b2 .
.TP
.I mpmagcmp
the same as
.I mpcmp
but ignores the sign and just compares magnitudes.
.PD
.PP
.I Mpextendedgcd
computes the greatest common denominator,
.IR d ,
of
.I a
and
.IR b .
It also computes
.I x
and
.I y
such that
.BR "a*x + b*y = d" .
Both
.I a
and
.I b
are required to be positive.
If called with negative arguments, it will
return a gcd of 0.
.PP
.I Mpinverse
computes the multiplicative inverse of
.I b
.B mod
.IR m .
.PP
.I Mpsignif
returns the bit offset of the left most 1 bit in
.IR b .
.I Mplowbits0
returns the bit offset of the right most 1 bit.
For example, for 0x14,
.I mpsignif
would return 4 and
.I mplowbits0
would return 2.
.PP
The remaining routines all work on arrays of
.B mpdigit
rather than
.BR mpint 's.
They are the basis of all the other routines.  They are separated out
to allow them to be rewritten in assembler for each architecture.  There
is also a portable C version for each one.
.TF mpvecdigmuladd
.TP
.I mpdigdiv
.BR "quotient = dividend[0:1] / divisor" .
.TP
.I mpvecadd
.BR "sum[0:alen] = a[0:alen-1] + b[0:blen-1]" .
We assume alen >= blen and that sum has room for alen+1 digits.
.TP
.I mpvecsub
.BR "diff[0:alen-1] = a[0:alen-1] - b[0:blen-1]" .
We assume that alen >= blen and that diff has room for alen digits.
.TP
.I mpvecdigmuladd
.BR "p[0:n] += m * b[0:n-1]" .
This multiplies a an array of digits times a scalar and adds it to another array.
We assume p has room for n+1 digits.
.TP
.I mpvecdigmulsub
.BR "p[0:n] -= m * b[0:n-1]" .
This multiplies a an array of digits times a scalar and subtracts it fromo another array.
We assume p has room for n+1 digits.  It returns +1 is the result is positive and
-1 if negative.
.TP
.I mpvecmul
.BR "p[0:alen*blen] = a[0:alen-1] * b[0:blen-1]" .
We assume that p has room for alen*blen+1 digits.
.TP
.I mpveccmp
This returns -1, 0, or +1 as a - b is negative, 0, or positive.
.PD
.PP
.IR mptwo ,
.I mpone
and
.I mpzero
are the constants 2, 1 and 0.  These cannot be freed.
.SS "Chinese remainder theorem
.PP
When computing in a non-prime modulus, 
.IR n,
it is possible to perform the computations on the residues modulo the prime
factors of
.I n
instead.  Since these numbers are smaller, multiplication and exponentiation
can be much faster.
.PP
.I Crtin
computes the residues of
.I x
and returns them in a newly allocated structure:
.EX
	typedef struct CRTres	CRTres;	
	{
		int	n;	// number of residues
		mpint	*r[n];	// residues
	};
.EE
.PP
.I Crtout
takes a residue representation of a number and converts it back into
the number.  It also frees the residue structure.
.PP
.I Crepre
saves a copy of the factors and precomputes the constants necessary
for converting the residue form back into a number modulo
the product of the factors.  It returns a newly allocated structure
containing values.
.PP
.I Crtprefree
and
.I crtresfree
free
.I CRTpre
and
.I CRTres
structures respectively.
.PP
.I Mpfactorial
returns the factorial of
.IR n .
.SH SOURCE
.B \*9/src/libmp