1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
|
#include <u.h>
#include <libc.h>
#include <bio.h>
#include "diff.h"
/* diff - differential file comparison
*
* Uses an algorithm due to Harold Stone, which finds
* a pair of longest identical subsequences in the two
* files.
*
* The major goal is to generate the match vector J.
* J[i] is the index of the line in file1 corresponding
* to line i file0. J[i] = 0 if there is no
* such line in file1.
*
* Lines are hashed so as to work in core. All potential
* matches are located by sorting the lines of each file
* on the hash (called value). In particular, this
* collects the equivalence classes in file1 together.
* Subroutine equiv replaces the value of each line in
* file0 by the index of the first element of its
* matching equivalence in (the reordered) file1.
* To save space equiv squeezes file1 into a single
* array member in which the equivalence classes
* are simply concatenated, except that their first
* members are flagged by changing sign.
*
* Next the indices that point into member are unsorted into
* array class according to the original order of file0.
*
* The cleverness lies in routine stone. This marches
* through the lines of file0, developing a vector klist
* of "k-candidates". At step i a k-candidate is a matched
* pair of lines x,y (x in file0 y in file1) such that
* there is a common subsequence of lenght k
* between the first i lines of file0 and the first y
* lines of file1, but there is no such subsequence for
* any smaller y. x is the earliest possible mate to y
* that occurs in such a subsequence.
*
* Whenever any of the members of the equivalence class of
* lines in file1 matable to a line in file0 has serial number
* less than the y of some k-candidate, that k-candidate
* with the smallest such y is replaced. The new
* k-candidate is chained (via pred) to the current
* k-1 candidate so that the actual subsequence can
* be recovered. When a member has serial number greater
* that the y of all k-candidates, the klist is extended.
* At the end, the longest subsequence is pulled out
* and placed in the array J by unravel.
*
* With J in hand, the matches there recorded are
* check'ed against reality to assure that no spurious
* matches have crept in due to hashing. If they have,
* they are broken, and "jackpot " is recorded--a harmless
* matter except that a true match for a spuriously
* mated line may now be unnecessarily reported as a change.
*
* Much of the complexity of the program comes simply
* from trying to minimize core utilization and
* maximize the range of doable problems by dynamically
* allocating what is needed and reusing what is not.
* The core requirements for problems larger than somewhat
* are (in words) 2*length(file0) + length(file1) +
* 3*(number of k-candidates installed), typically about
* 6n words for files of length n.
*/
/* TIDY THIS UP */
struct cand {
int x;
int y;
int pred;
} cand;
struct line {
int serial;
int value;
} *file[2], line;
int len[2];
int binary;
struct line *sfile[2]; /*shortened by pruning common prefix and suffix*/
int slen[2];
int pref, suff; /*length of prefix and suffix*/
int *class; /*will be overlaid on file[0]*/
int *member; /*will be overlaid on file[1]*/
int *klist; /*will be overlaid on file[0] after class*/
struct cand *clist; /* merely a free storage pot for candidates */
int clen;
int *J; /*will be overlaid on class*/
long *ixold; /*will be overlaid on klist*/
long *ixnew; /*will be overlaid on file[1]*/
/* END OF SOME TIDYING */
static void
sort(struct line *a, int n) /*shellsort CACM #201*/
{
int m;
struct line *ai, *aim, *j, *k;
struct line w;
int i;
m = 0;
for (i = 1; i <= n; i *= 2)
m = 2*i - 1;
for (m /= 2; m != 0; m /= 2) {
k = a+(n-m);
for (j = a+1; j <= k; j++) {
ai = j;
aim = ai+m;
do {
if (aim->value > ai->value ||
aim->value == ai->value &&
aim->serial > ai->serial)
break;
w = *ai;
*ai = *aim;
*aim = w;
aim = ai;
ai -= m;
} while (ai > a && aim >= ai);
}
}
}
static void
unsort(struct line *f, int l, int *b)
{
int *a;
int i;
a = MALLOC(int, (l+1));
for(i=1;i<=l;i++)
a[f[i].serial] = f[i].value;
for(i=1;i<=l;i++)
b[i] = a[i];
FREE(a);
}
static void
prune(void)
{
int i,j;
for(pref=0;pref<len[0]&&pref<len[1]&&
file[0][pref+1].value==file[1][pref+1].value;
pref++ ) ;
for(suff=0;suff<len[0]-pref&&suff<len[1]-pref&&
file[0][len[0]-suff].value==file[1][len[1]-suff].value;
suff++) ;
for(j=0;j<2;j++) {
sfile[j] = file[j]+pref;
slen[j] = len[j]-pref-suff;
for(i=0;i<=slen[j];i++)
sfile[j][i].serial = i;
}
}
static void
equiv(struct line *a, int n, struct line *b, int m, int *c)
{
int i, j;
i = j = 1;
while(i<=n && j<=m) {
if(a[i].value < b[j].value)
a[i++].value = 0;
else if(a[i].value == b[j].value)
a[i++].value = j;
else
j++;
}
while(i <= n)
a[i++].value = 0;
b[m+1].value = 0;
j = 0;
while(++j <= m) {
c[j] = -b[j].serial;
while(b[j+1].value == b[j].value) {
j++;
c[j] = b[j].serial;
}
}
c[j] = -1;
}
static int
newcand(int x, int y, int pred)
{
struct cand *q;
clist = REALLOC(clist, struct cand, (clen+1));
q = clist + clen;
q->x = x;
q->y = y;
q->pred = pred;
return clen++;
}
static int
search(int *c, int k, int y)
{
int i, j, l;
int t;
if(clist[c[k]].y < y) /*quick look for typical case*/
return k+1;
i = 0;
j = k+1;
while((l=(i+j)/2) > i) {
t = clist[c[l]].y;
if(t > y)
j = l;
else if(t < y)
i = l;
else
return l;
}
return l+1;
}
static int
stone(int *a, int n, int *b, int *c)
{
int i, k,y;
int j, l;
int oldc, tc;
int oldl;
k = 0;
c[0] = newcand(0,0,0);
for(i=1; i<=n; i++) {
j = a[i];
if(j==0)
continue;
y = -b[j];
oldl = 0;
oldc = c[0];
do {
if(y <= clist[oldc].y)
continue;
l = search(c, k, y);
if(l!=oldl+1)
oldc = c[l-1];
if(l<=k) {
if(clist[c[l]].y <= y)
continue;
tc = c[l];
c[l] = newcand(i,y,oldc);
oldc = tc;
oldl = l;
} else {
c[l] = newcand(i,y,oldc);
k++;
break;
}
} while((y=b[++j]) > 0);
}
return k;
}
static void
unravel(int p)
{
int i;
struct cand *q;
for(i=0; i<=len[0]; i++) {
if (i <= pref)
J[i] = i;
else if (i > len[0]-suff)
J[i] = i+len[1]-len[0];
else
J[i] = 0;
}
for(q=clist+p;q->y!=0;q=clist+q->pred)
J[q->x+pref] = q->y+pref;
}
static void
output(void)
{
int m, i0, i1, j0, j1;
m = len[0];
J[0] = 0;
J[m+1] = len[1]+1;
if (mode != 'e') {
for (i0 = 1; i0 <= m; i0 = i1+1) {
while (i0 <= m && J[i0] == J[i0-1]+1)
i0++;
j0 = J[i0-1]+1;
i1 = i0-1;
while (i1 < m && J[i1+1] == 0)
i1++;
j1 = J[i1+1]-1;
J[i1] = j1;
change(i0, i1, j0, j1);
}
}
else {
for (i0 = m; i0 >= 1; i0 = i1-1) {
while (i0 >= 1 && J[i0] == J[i0+1]-1 && J[i0])
i0--;
j0 = J[i0+1]-1;
i1 = i0+1;
while (i1 > 1 && J[i1-1] == 0)
i1--;
j1 = J[i1-1]+1;
J[i1] = j1;
change(i1 , i0, j1, j0);
}
}
if (m == 0)
change(1, 0, 1, len[1]);
flushchanges();
}
#define BUF 4096
static int
cmp(Biobuf* b1, Biobuf* b2)
{
int n;
uchar buf1[BUF], buf2[BUF];
int f1, f2;
vlong nc = 1;
uchar *b1s, *b1e, *b2s, *b2e;
f1 = Bfildes(b1);
f2 = Bfildes(b2);
seek(f1, 0, 0);
seek(f2, 0, 0);
b1s = b1e = buf1;
b2s = b2e = buf2;
for(;;){
if(b1s >= b1e){
if(b1s >= &buf1[BUF])
b1s = buf1;
n = read(f1, b1s, &buf1[BUF] - b1s);
b1e = b1s + n;
}
if(b2s >= b2e){
if(b2s >= &buf2[BUF])
b2s = buf2;
n = read(f2, b2s, &buf2[BUF] - b2s);
b2e = b2s + n;
}
n = b2e - b2s;
if(n > b1e - b1s)
n = b1e - b1s;
if(n <= 0)
break;
if(memcmp((void *)b1s, (void *)b2s, n) != 0){
return 1;
}
nc += n;
b1s += n;
b2s += n;
}
if(b1e - b1s == b2e - b2s)
return 0;
return 1;
}
void
diffreg(char *f, char *t)
{
Biobuf *b0, *b1;
int k;
binary = 0;
b0 = prepare(0, f);
if (!b0)
return;
b1 = prepare(1, t);
if (!b1) {
FREE(file[0]);
Bterm(b0);
return;
}
if (binary){
/* could use b0 and b1 but this is simpler. */
if (cmp(b0, b1))
print("binary files %s %s differ\n", f, t);
Bterm(b0);
Bterm(b1);
return;
}
clen = 0;
prune();
sort(sfile[0], slen[0]);
sort(sfile[1], slen[1]);
member = (int *)file[1];
equiv(sfile[0], slen[0], sfile[1], slen[1], member);
member = REALLOC(member, int, slen[1]+2);
class = (int *)file[0];
unsort(sfile[0], slen[0], class);
class = REALLOC(class, int, slen[0]+2);
klist = MALLOC(int, slen[0]+2);
clist = MALLOC(struct cand, 1);
k = stone(class, slen[0], member, klist);
FREE(member);
FREE(class);
J = MALLOC(int, len[0]+2);
unravel(klist[k]);
FREE(clist);
FREE(klist);
ixold = MALLOC(long, len[0]+2);
ixnew = MALLOC(long, len[1]+2);
Bseek(b0, 0, 0); Bseek(b1, 0, 0);
check(b0, b1);
output();
FREE(J); FREE(ixold); FREE(ixnew);
Bterm(b0); Bterm(b1); /* ++++ */
}
|