aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/map/libmap/tetra.c
blob: 6bdef49b9e6299c9a3e2388fed0f006cf9d714ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#include <u.h>
#include <libc.h>
#include "map.h"

/*
 *	conformal map of earth onto tetrahedron
 *	the stages of mapping are
 *	(a) stereo projection of tetrahedral face onto
 *	    isosceles curvilinear triangle with 3 120-degree
 *	    angles and one straight side
 *	(b) map of this triangle onto half plane cut along
 *	    3 rays from the roots of unity to infinity
 *		formula (z^4+2*3^.5*z^2-1)/(z^4-2*3^.5*z^2-1)
 *	(c) do 3 times for  each sector of plane:
 *	    map of |arg z|<=pi/6, cut along z>1 into
 *	    triangle |arg z|<=pi/6, Re z<=const,
 *	    with upper side of cut going into upper half of
 *	    of vertical side of triangle and lowere into lower
 *		formula int from 0 to z dz/sqrt(1-z^3)
 *
 *	int from u to 1 3^.25*du/sqrt(1-u^3) =
		F(acos((rt3-1+u)/(rt3+1-u)),sqrt(1/2+rt3/4))
 *	int from 1 to u 3^.25*du/sqrt(u^3-1) =
 *		F(acos((rt3+1-u)/(rt3-1+u)),sqrt(1/2-rt3/4))
 *	this latter formula extends analytically down to
 *	u=0 and is the basis of this routine, with the
 *	argument of complex elliptic integral elco2
 *	being tan(acos...)
 *	the formula F(pi-x,k) = 2*F(pi/2,k)-F(x,k) is
 *	used to cross over into the region where Re(acos...)>pi/2
 *		f0 and fpi are suitably scaled complete integrals
*/

#define TFUZZ 0.00001

static struct place tpole[4];	/* point of tangency of tetrahedron face*/
static double tpoleinit[4][2] = {
	1.,	0.,
	1.,	180.,
	-1.,	90.,
	-1.,	-90.
};
static struct tproj {
	double tlat,tlon;	/* center of stereo projection*/
	double ttwist;		/* rotatn before stereo*/
	double trot;		/*rotate after projection*/
	struct place projpl;	/*same as tlat,tlon*/
	struct coord projtw;	/*same as ttwist*/
	struct coord postrot;	/*same as trot*/
} tproj[4][4] = {
{/*00*/	{0.},
 /*01*/	{90.,	0.,	90.,	-90.},
 /*02*/	{0.,	45.,	-45.,	150.},
 /*03*/	{0.,	-45.,	-135.,	30.}
},
{/*10*/	{90.,	0.,	-90.,	90.},
 /*11*/ {0.},
 /*12*/ {0.,	135.,	-135.,	-150.},
 /*13*/	{0.,	-135.,	-45.,	-30.}
},
{/*20*/	{0.,	45.,	135.,	-30.},
 /*21*/	{0.,	135.,	45.,	-150.},
 /*22*/	{0.},
 /*23*/	{-90.,	0.,	180.,	90.}
},
{/*30*/	{0.,	-45.,	45.,	-150.},
 /*31*/ {0.,	-135.,	135.,	-30.},
 /*32*/	{-90.,	0.,	0.,	90.},
 /*33*/ {0.} 
}};
static double tx[4] = {	/*where to move facet after final rotation*/
	0.,	0.,	-1.,	1.	/*-1,1 to be sqrt(3)*/
};
static double ty[4] = {
	0.,	2.,	-1.,	-1.
};
static double root3;
static double rt3inv;
static double two_rt3;
static double tkc,tk,tcon;
static double f0r,f0i,fpir,fpii;

static void
twhichp(struct place *g, int *p, int *q)
{
	int i,j,k;
	double cosdist[4];
	struct place *tp;
	for(i=0;i<4;i++) {
		tp = &tpole[i];
		cosdist[i] = g->nlat.s*tp->nlat.s +
			  g->nlat.c*tp->nlat.c*(
			  g->wlon.s*tp->wlon.s +
			  g->wlon.c*tp->wlon.c);
	}
	j = 0;
	for(i=1;i<4;i++)
		if(cosdist[i] > cosdist[j])
			j = i;
	*p = j;
	k = j==0?1:0;
	for(i=0;i<4;i++)
		if(i!=j&&cosdist[i]>cosdist[k])
			k = i;
	*q = k;
}

int
Xtetra(struct place *place, double *x, double *y)
{
	int i,j;
	struct place pl;
	register struct tproj *tpp;
	double vr, vi;
	double br, bi;
	double zr,zi,z2r,z2i,z4r,z4i,sr,si,tr,ti;
	twhichp(place,&i,&j);
	copyplace(place,&pl);
	norm(&pl,&tproj[i][j].projpl,&tproj[i][j].projtw);
	Xstereographic(&pl,&vr,&vi);
	zr = vr/2;
	zi = vi/2;
	if(zr<=TFUZZ)
		zr = TFUZZ;
	csq(zr,zi,&z2r,&z2i);
	csq(z2r,z2i,&z4r,&z4i);
	z2r *= two_rt3;
	z2i *= two_rt3;
	cdiv(z4r+z2r-1,z4i+z2i,z4r-z2r-1,z4i-z2i,&sr,&si);
	csqrt(sr-1,si,&tr,&ti);
	cdiv(tcon*tr,tcon*ti,root3+1-sr,-si,&br,&bi);
	if(br<0) {
		br = -br;
		bi = -bi;
		if(!elco2(br,bi,tk,1.,1.,&vr,&vi))
			return 0;
		vr = fpir - vr;
		vi = fpii - vi;
	} else 
		if(!elco2(br,bi,tk,1.,1.,&vr,&vi))
			return 0;
	if(si>=0) {
		tr = f0r - vi;
		ti = f0i + vr;
	} else {
		tr = f0r + vi;
		ti = f0i - vr;
	}
	tpp = &tproj[i][j];
	*x = tr*tpp->postrot.c +
	     ti*tpp->postrot.s + tx[i];
	*y = ti*tpp->postrot.c -
	     tr*tpp->postrot.s + ty[i];
	return(1);
}

int
tetracut(struct place *g, struct place *og, double *cutlon)
{
	int i,j,k;
	if((g->nlat.s<=-rt3inv&&og->nlat.s<=-rt3inv) && 
	   (ckcut(g,og,*cutlon=0.)==2||ckcut(g,og,*cutlon=PI)==2))
		return(2);
	twhichp(g,&i,&k);
	twhichp(og,&j,&k);
	if(i==j||i==0||j==0)
		return(1);
	return(0);
}

proj
tetra(void)
{
	int i;
	int j;
	register struct place *tp;
	register struct tproj *tpp;
	double t;
	root3 = sqrt(3.);
	rt3inv = 1/root3;
	two_rt3 = 2*root3;
	tkc = sqrt(.5-.25*root3);
	tk = sqrt(.5+.25*root3);
	tcon = 2*sqrt(root3);
	elco2(tcon/(root3-1),0.,tkc,1.,1.,&f0r,&f0i);
	elco2(1.e15,0.,tk,1.,1.,&fpir,&fpii);
	fpir *= 2;
	fpii *= 2;
	for(i=0;i<4;i++) {
		tx[i] *= f0r*root3;
		ty[i] *= f0r;
		tp = &tpole[i];
		t = tp->nlat.s = tpoleinit[i][0]/root3;
		tp->nlat.c = sqrt(1 - t*t);
		tp->nlat.l = atan2(tp->nlat.s,tp->nlat.c);
		deg2rad(tpoleinit[i][1],&tp->wlon);
		for(j=0;j<4;j++) {
			tpp = &tproj[i][j];
			latlon(tpp->tlat,tpp->tlon,&tpp->projpl);
			deg2rad(tpp->ttwist,&tpp->projtw);
			deg2rad(tpp->trot,&tpp->postrot);
		}
	}
	return(Xtetra);
}