1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
|
/*
* rotate an image 180° in O(log Dx + log Dy) /dev/draw writes,
* using an extra buffer same size as the image.
*
* the basic concept is that you can invert an array by inverting
* the top half, inverting the bottom half, and then swapping them.
* the code does this slightly backwards to ensure O(log n) runtime.
* (If you do it wrong, you can get O(log² n) runtime.)
*
* This is usually overkill, but it speeds up slow remote
* connections quite a bit.
*/
#include <u.h>
#include <libc.h>
#include <bio.h>
#include <draw.h>
#include <thread.h>
#include <cursor.h>
#include "page.h"
int ndraw = 0;
enum {
Xaxis = 0,
Yaxis = 1,
};
Image *mtmp;
void
writefile(char *name, Image *im, int gran)
{
static int c = 100;
int fd;
char buf[200];
snprint(buf, sizeof buf, "%d%s%d", c++, name, gran);
fd = create(buf, OWRITE, 0666);
if(fd < 0)
return;
writeimage(fd, im, 0);
close(fd);
}
void
moveup(Image *im, Image *tmp, int a, int b, int c, int axis)
{
Rectangle range;
Rectangle dr0, dr1;
Point p0, p1;
if(a == b || b == c)
return;
drawop(tmp, tmp->r, im, nil, im->r.min, S);
switch(axis){
case Xaxis:
range = Rect(a, im->r.min.y, c, im->r.max.y);
dr0 = range;
dr0.max.x = dr0.min.x+(c-b);
p0 = Pt(b, im->r.min.y);
dr1 = range;
dr1.min.x = dr1.max.x-(b-a);
p1 = Pt(a, im->r.min.y);
break;
case Yaxis:
default:
range = Rect(im->r.min.x, a, im->r.max.x, c);
dr0 = range;
dr0.max.y = dr0.min.y+(c-b);
p0 = Pt(im->r.min.x, b);
dr1 = range;
dr1.min.y = dr1.max.y-(b-a);
p1 = Pt(im->r.min.x, a);
break;
}
drawop(im, dr0, tmp, nil, p0, S);
drawop(im, dr1, tmp, nil, p1, S);
}
void
interlace(Image *im, Image *tmp, int axis, int n, Image *mask, int gran)
{
Point p0, p1;
Rectangle r0, r1;
r0 = im->r;
r1 = im->r;
switch(axis) {
case Xaxis:
r0.max.x = n;
r1.min.x = n;
p0 = (Point){gran, 0};
p1 = (Point){-gran, 0};
break;
case Yaxis:
default:
r0.max.y = n;
r1.min.y = n;
p0 = (Point){0, gran};
p1 = (Point){0, -gran};
break;
}
drawop(tmp, im->r, im, display->opaque, im->r.min, S);
gendrawop(im, r0, tmp, p0, mask, mask->r.min, S);
gendrawop(im, r0, tmp, p1, mask, p1, S);
}
/*
* Halve the grating period in the mask.
* The grating currently looks like
* ####____####____####____####____
* where #### is opacity.
*
* We want
* ##__##__##__##__##__##__##__##__
* which is achieved by shifting the mask
* and drawing on itself through itself.
* Draw doesn't actually allow this, so
* we have to copy it first.
*
* ####____####____####____####____ (dst)
* + ____####____####____####____#### (src)
* in __####____####____####____####__ (mask)
* ===========================================
* ##__##__##__##__##__##__##__##__
*/
int
nextmask(Image *mask, int axis, int maskdim)
{
Point o;
o = axis==Xaxis ? Pt(maskdim,0) : Pt(0,maskdim);
drawop(mtmp, mtmp->r, mask, nil, mask->r.min, S);
gendrawop(mask, mask->r, mtmp, o, mtmp, divpt(o,-2), S);
// writefile("mask", mask, maskdim/2);
return maskdim/2;
}
void
shuffle(Image *im, Image *tmp, int axis, int n, Image *mask, int gran,
int lastnn)
{
int nn, left;
if(gran == 0)
return;
left = n%(2*gran);
nn = n - left;
interlace(im, tmp, axis, nn, mask, gran);
// writefile("interlace", im, gran);
gran = nextmask(mask, axis, gran);
shuffle(im, tmp, axis, n, mask, gran, nn);
// writefile("shuffle", im, gran);
moveup(im, tmp, lastnn, nn, n, axis);
// writefile("move", im, gran);
}
void
rot180(Image *im)
{
Image *tmp, *tmp0;
Image *mask;
Rectangle rmask;
int gran;
if(chantodepth(im->chan) < 8){
/* this speeds things up dramatically; draw is too slow on sub-byte pixel sizes */
tmp0 = xallocimage(display, im->r, CMAP8, 0, DNofill);
drawop(tmp0, tmp0->r, im, nil, im->r.min, S);
}else
tmp0 = im;
tmp = xallocimage(display, tmp0->r, tmp0->chan, 0, DNofill);
if(tmp == nil){
if(tmp0 != im)
freeimage(tmp0);
return;
}
for(gran=1; gran<Dx(im->r); gran *= 2)
;
gran /= 4;
rmask.min = ZP;
rmask.max = (Point){2*gran, 100};
mask = xallocimage(display, rmask, GREY1, 1, DTransparent);
mtmp = xallocimage(display, rmask, GREY1, 1, DTransparent);
if(mask == nil || mtmp == nil) {
fprint(2, "out of memory during rot180: %r\n");
wexits("memory");
}
rmask.max.x = gran;
drawop(mask, rmask, display->opaque, nil, ZP, S);
// writefile("mask", mask, gran);
shuffle(im, tmp, Xaxis, Dx(im->r), mask, gran, 0);
freeimage(mask);
freeimage(mtmp);
for(gran=1; gran<Dy(im->r); gran *= 2)
;
gran /= 4;
rmask.max = (Point){100, 2*gran};
mask = xallocimage(display, rmask, GREY1, 1, DTransparent);
mtmp = xallocimage(display, rmask, GREY1, 1, DTransparent);
if(mask == nil || mtmp == nil) {
fprint(2, "out of memory during rot180: %r\n");
wexits("memory");
}
rmask.max.y = gran;
drawop(mask, rmask, display->opaque, nil, ZP, S);
shuffle(im, tmp, Yaxis, Dy(im->r), mask, gran, 0);
freeimage(mask);
freeimage(mtmp);
freeimage(tmp);
if(tmp0 != im)
freeimage(tmp0);
}
/* rotates an image 90 degrees clockwise */
Image *
rot90(Image *im)
{
Image *tmp;
int i, j, dx, dy;
dx = Dx(im->r);
dy = Dy(im->r);
tmp = xallocimage(display, Rect(0, 0, dy, dx), im->chan, 0, DCyan);
if(tmp == nil) {
fprint(2, "out of memory during rot90: %r\n");
wexits("memory");
}
for(j = 0; j < dx; j++) {
for(i = 0; i < dy; i++) {
drawop(tmp, Rect(i, j, i+1, j+1), im, nil, Pt(j, dy-(i+1)), S);
}
}
freeimage(im);
return(tmp);
}
/* rotates an image 270 degrees clockwise */
Image *
rot270(Image *im)
{
Image *tmp;
int i, j, dx, dy;
dx = Dx(im->r);
dy = Dy(im->r);
tmp = xallocimage(display, Rect(0, 0, dy, dx), im->chan, 0, DCyan);
if(tmp == nil) {
fprint(2, "out of memory during rot270: %r\n");
wexits("memory");
}
for(i = 0; i < dy; i++) {
for(j = 0; j < dx; j++) {
drawop(tmp, Rect(i, j, i+1, j+1), im, nil, Pt(dx-(j+1), i), S);
}
}
freeimage(im);
return(tmp);
}
/* from resample.c -- resize from → to using interpolation */
#define K2 7 /* from -.7 to +.7 inclusive, meaning .2 into each adjacent pixel */
#define NK (2*K2+1)
double K[NK];
double
fac(int L)
{
int i, f;
f = 1;
for(i=L; i>1; --i)
f *= i;
return f;
}
/*
* i0(x) is the modified Bessel function, Σ (x/2)^2L / (L!)²
* There are faster ways to calculate this, but we precompute
* into a table so let's keep it simple.
*/
double
i0(double x)
{
double v;
int L;
v = 1.0;
for(L=1; L<10; L++)
v += pow(x/2., 2*L)/pow(fac(L), 2);
return v;
}
double
kaiser(double x, double t, double a)
{
if(fabs(x) > t)
return 0.;
return i0(a*sqrt(1-(x*x/(t*t))))/i0(a);
}
void
resamplex(uchar *in, int off, int d, int inx, uchar *out, int outx)
{
int i, x, k;
double X, xx, v, rat;
rat = (double)inx/(double)outx;
for(x=0; x<outx; x++){
if(inx == outx){
/* don't resample if size unchanged */
out[off+x*d] = in[off+x*d];
continue;
}
v = 0.0;
X = x*rat;
for(k=-K2; k<=K2; k++){
xx = X + rat*k/10.;
i = xx;
if(i < 0)
i = 0;
if(i >= inx)
i = inx-1;
v += in[off+i*d] * K[K2+k];
}
out[off+x*d] = v;
}
}
void
resampley(uchar **in, int off, int iny, uchar **out, int outy)
{
int y, i, k;
double Y, yy, v, rat;
rat = (double)iny/(double)outy;
for(y=0; y<outy; y++){
if(iny == outy){
/* don't resample if size unchanged */
out[y][off] = in[y][off];
continue;
}
v = 0.0;
Y = y*rat;
for(k=-K2; k<=K2; k++){
yy = Y + rat*k/10.;
i = yy;
if(i < 0)
i = 0;
if(i >= iny)
i = iny-1;
v += in[i][off] * K[K2+k];
}
out[y][off] = v;
}
}
Image*
resample(Image *from, Image *to)
{
int i, j, bpl, nchan;
uchar **oscan, **nscan;
char tmp[20];
int xsize, ysize;
double v;
Image *t1, *t2;
ulong tchan;
for(i=-K2; i<=K2; i++){
K[K2+i] = kaiser(i/10., K2/10., 4.);
}
/* normalize */
v = 0.0;
for(i=0; i<NK; i++)
v += K[i];
for(i=0; i<NK; i++)
K[i] /= v;
switch(from->chan){
case GREY8:
case RGB24:
case RGBA32:
case ARGB32:
case XRGB32:
break;
case CMAP8:
case RGB15:
case RGB16:
tchan = RGB24;
goto Convert;
case GREY1:
case GREY2:
case GREY4:
tchan = GREY8;
Convert:
/* use library to convert to byte-per-chan form, then convert back */
t1 = xallocimage(display, Rect(0, 0, Dx(from->r), Dy(from->r)), tchan, 0, DNofill);
if(t1 == nil) {
fprint(2, "out of memory for temp image 1 in resample: %r\n");
wexits("memory");
}
drawop(t1, t1->r, from, nil, ZP, S);
t2 = xallocimage(display, to->r, tchan, 0, DNofill);
if(t2 == nil) {
fprint(2, "out of memory temp image 2 in resample: %r\n");
wexits("memory");
}
resample(t1, t2);
drawop(to, to->r, t2, nil, ZP, S);
freeimage(t1);
freeimage(t2);
return to;
default:
sysfatal("can't handle channel type %s", chantostr(tmp, from->chan));
}
xsize = Dx(to->r);
ysize = Dy(to->r);
oscan = malloc(Dy(from->r)*sizeof(uchar*));
nscan = malloc(max(ysize, Dy(from->r))*sizeof(uchar*));
if(oscan == nil || nscan == nil)
sysfatal("can't allocate: %r");
/* unload original image into scan lines */
bpl = bytesperline(from->r, from->depth);
for(i=0; i<Dy(from->r); i++){
oscan[i] = malloc(bpl);
if(oscan[i] == nil)
sysfatal("can't allocate: %r");
j = unloadimage(from, Rect(from->r.min.x, from->r.min.y+i, from->r.max.x, from->r.min.y+i+1), oscan[i], bpl);
if(j != bpl)
sysfatal("unloadimage");
}
/* allocate scan lines for destination. we do y first, so need at least Dy(from->r) lines */
bpl = bytesperline(Rect(0, 0, xsize, Dy(from->r)), from->depth);
for(i=0; i<max(ysize, Dy(from->r)); i++){
nscan[i] = malloc(bpl);
if(nscan[i] == nil)
sysfatal("can't allocate: %r");
}
/* resample in X */
nchan = from->depth/8;
for(i=0; i<Dy(from->r); i++){
for(j=0; j<nchan; j++){
if(j==0 && from->chan==XRGB32)
continue;
resamplex(oscan[i], j, nchan, Dx(from->r), nscan[i], xsize);
}
free(oscan[i]);
oscan[i] = nscan[i];
nscan[i] = malloc(bpl);
if(nscan[i] == nil)
sysfatal("can't allocate: %r");
}
/* resample in Y */
for(i=0; i<xsize; i++)
for(j=0; j<nchan; j++)
resampley(oscan, nchan*i+j, Dy(from->r), nscan, ysize);
/* pack data into destination */
bpl = bytesperline(to->r, from->depth);
for(i=0; i<ysize; i++){
j = loadimage(to, Rect(0, i, xsize, i+1), nscan[i], bpl);
if(j != bpl)
sysfatal("loadimage: %r");
}
for(i=0; i<Dy(from->r); i++){
free(oscan[i]);
free(nscan[i]);
}
free(oscan);
free(nscan);
return to;
}
|