aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/venti/index.c
blob: 7fc15fd28da83f84cdce46d5b65bd5b1269f3a8f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
/*
 * Index, mapping scores to log positions.  The log data mentioned in
 * the index _always_ goes out to disk before the index blocks themselves.
 * A counter in the arena tail records which logged blocks have been
 * successfully indexed.  The ordering of dirtydcache calls along with
 * the flags passed to dirtydcache ensure the proper write ordering.
 * 
 * For historical reasons, there are two indexing schemes. In both,
 * the index is broken up into some number of fixed-size (say, 8kB)
 * buckets holding index entries.  An index entry is about 40 bytes.
 * The index can be spread across many disks, although in small
 * configurations it is not uncommon for the index and arenas to be
 * on the same disk.
 *  *
 * In the first scheme, the many buckets are treated as a giant on-disk
 * hash table.  If there are N buckets, then the top 32 bits of the
 * score are used as an index into the hash table, with each bucket
 * holding 2^32 / N of the index space.  The index must be sized so
 * that a bucket can't ever overflow.  Assuming that a typical compressed
 * data block is about 4000 bytes, the index size is expected to be
 * about 1% of the total data size.  Since scores are essentially
 * random, they will be distributed evenly among the buckets, so all
 * buckets should be about the same fullness.  A factor of 5 gives us
 * a wide comfort boundary, so the index storage is suggested to be
 * 5% of the total data storage.
 * 
 * Unfortunately, this very sparse index does not make good use of the
 * disk -- most of it is empty, and disk reads, which are costly because
 * of the random seek to get to an arbitrary bucket, tend to bring in
 * only a few entries, making them hardly cost effective.  The second
 * scheme is a variation on the first scheme that tries to lay out the
 * index in a denser format on the disk.  In this scheme, the index
 * buckets are organized in a binary tree, with all data at the leaf
 * nodes.  Bucket numbers are easiest to treat in binary.  In the
 * beginning, there is a single bucket with 0-bit number "".  When a
 * bucket with number x fills, it splits into buckets 0x and 1x.  Since
 * x and 0x are the same number, this means that half the bucket space
 * is assigned to a new bucket, 1x.  So "" splits into 0 and 1, 1
 * splits into 01 and 11, and so on.  The bucket number determines the
 * placement on disk, and the bucket header includes the number of
 * bits represented by the bucket.  To find the right bucket for a
 * given score with top 32-bits x, read bucket "" off disk and check
 * its depth.  If it is zero, we're done.  If x doesn't match the
 * number of bits in 0's header, we know that the block has split, so
 * we use the last 1 bit of x to load a new block (perhaps the same
 * one) and repeat, using successively more bits of x until we find
 * the block responsible for x.  Note that we're using bits from the
 * _right_ not the left.  This gives the "split into 0x and 1x" property
 * needed by the tree and is easier than using the reversal of the
 * bits on the left.
 *  *
 * At the moment, this second scheme sounds worse than the first --
 * there are log n disk reads to find a block instead of just 1.  But
 * we can keep the tree structure in memory, using 1 bit per block to
 * keep track of whether that block has been allocated.  Want to know
 * whether block x has been split?  Check whether 1x is allocated.  1
 * bit per 8kB gives us an in-use bitmap 1/65536 the size of the index.
 * The index data is 1/100 the size of the arena data, explained above.
 * In this scheme, after the first block split, the index is always
 * at least half full (proof by induction), so it is at most 2x the
 * size of the index data.  This gives a bitmap size of 2/6,553,600
 * of the data size.  Let's call that one millionth.  So each terabyte
 * of storage requires one megabyte of free bitmap.  The bitmap is
 * going to be accessed so much that it will be effectively pinned in
 * the cache.  So it still only takes one disk read to find the block
 * -- the tree walking can be done by consulting the in-core bitmap
 * describing the tree structure.
 *  *
 * Now we have to worry about write ordering, though.  What if the
 * bitmap ends up out of sync with the index blocks?  When block x
 * splits into 0x and 1x, causing an update to bitmap block b, the
 * dcache flushing code makes sure that the writes happen in this
 * order: first 1x, then 0x, then the bitmap.  Writing 1x before 0x
 * makes sure we write the split-off entries to disk before we discard
 * them from 0x.  Writing the bitmap after both simplifies the following
 * case analysis.
 * 
 * If Venti is interrupted while flushing blocks to disk, the state
 * of the disk upon next startup can be one of the following:
 *  *

 * (a) none of 0x, 1x, and b are written
 *	Looks like nothing happened - use as is.
 *
 * (b) 1x is written
 *	Since 0x hasn't been rewritten and the bitmap doesn't record 1x
 * 	as being in use, it's like this never happened.  See (a).
 *	This does mean that the bitmap trumps actual disk contents:
 *	no need to zero the index disks anymore.
 *
 * (c) 0x and 1x are written, but not the bitmap
 *	Writing 0x commits the change.  When we next encounter
 *	0x or 1x on a lookup (we can't get to 1x except through x==0x),
 *	the bitmap will direct us to x, we'll load the block and find out
 * 	that its now 0x, so we update the bitmap.
 *
 * (d) 0x, 1x, and b are written.
 *	Great - just use as is.
 */

#include "stdinc.h"
#include "dat.h"
#include "fns.h"

static int	bucklook(u8int *score, int type, u8int *data, int n);
static int	writebucket(ISect *is, u32int buck, IBucket *ib, DBlock *b);
static int	okibucket(IBucket *ib, ISect *is);
static ISect	*initisect1(ISect *is);

//static QLock	indexlock;	//ZZZ

static char IndexMagic[] = "venti index configuration";

Index*
initindex(char *name, ISect **sects, int n)
{
	IFile f;
	Index *ix;
	ISect *is;
	u32int last, blocksize, tabsize;
	int i, nbits;

	if(n <= 0){
		seterr(EOk, "no index sections to initialize index");
		return nil;
	}
	ix = MKZ(Index);
	if(ix == nil){
		seterr(EOk, "can't initialize index: out of memory");
		freeindex(ix);
		return nil;
	}

	tabsize = sects[0]->tabsize;
	if(partifile(&f, sects[0]->part, sects[0]->tabbase, tabsize) < 0)
		return nil;
	if(parseindex(&f, ix) < 0){
		freeifile(&f);
		freeindex(ix);
		return nil;
	}
	freeifile(&f);
	if(namecmp(ix->name, name) != 0){
		seterr(ECorrupt, "mismatched index name: found %s expected %s", ix->name, name);
		return nil;
	}
	if(ix->nsects != n){
		seterr(ECorrupt, "mismatched number index sections: found %d expected %d", n, ix->nsects);
		freeindex(ix);
		return nil;
	}
	ix->sects = sects;
	last = 0;
	blocksize = ix->blocksize;
	for(i = 0; i < ix->nsects; i++){
		is = sects[i];
		if(namecmp(ix->name, is->index) != 0
		|| is->blocksize != blocksize
		|| is->tabsize != tabsize
		|| namecmp(is->name, ix->smap[i].name) != 0
		|| is->start != ix->smap[i].start
		|| is->stop != ix->smap[i].stop
		|| last != is->start
		|| is->start > is->stop){
			seterr(ECorrupt, "inconsistent index sections in %s", ix->name);
			freeindex(ix);
			return nil;
		}
		last = is->stop;
	}
	ix->tabsize = tabsize;
	ix->buckets = last;

	/* compute number of buckets used for in-use map */
	nbits = blocksize*8;
	ix->bitbuckets = (ix->buckets+nbits-1)/nbits;

	last -= ix->bitbuckets;
	/* 
	 * compute log of max. power of two not greater than 
	 * number of remaining buckets.
	 */
	for(nbits=0; last>>=1; nbits++)
		;
	ix->maxdepth = nbits;

	if((1UL<<ix->maxdepth) > ix->buckets-ix->bitbuckets){
		seterr(ECorrupt, "inconsistent math for buckets in %s", ix->name);
		freeindex(ix);
		return nil;
	}

	ix->arenas = MKNZ(Arena*, ix->narenas);
	if(maparenas(ix->amap, ix->arenas, ix->narenas, ix->name) < 0){
		freeindex(ix);
		return nil;
	}
	return ix;
}

int
wbindex(Index *ix)
{
	Fmt f;
	ZBlock *b;
	int i;

	if(ix->nsects == 0){
		seterr(EOk, "no sections in index %s", ix->name);
		return -1;
	}
	b = alloczblock(ix->tabsize, 1);
	if(b == nil){
		seterr(EOk, "can't write index configuration: out of memory");
		return -1;
	}
	fmtzbinit(&f, b);
	if(outputindex(&f, ix) < 0){
		seterr(EOk, "can't make index configuration: table storage too small %d", ix->tabsize);
		freezblock(b);
		return -1;
	}
	for(i = 0; i < ix->nsects; i++){
		if(writepart(ix->sects[i]->part, ix->sects[i]->tabbase, b->data, ix->tabsize) < 0){
			seterr(EOk, "can't write index: %r");
			freezblock(b);
			return -1;
		}
	}
	freezblock(b);

	for(i = 0; i < ix->nsects; i++)
		if(wbisect(ix->sects[i]) < 0)
			return -1;

	return 0;
}

/*
 * index: IndexMagic '\n' version '\n' name '\n' blocksize '\n' sections arenas
 * version, blocksize: u32int
 * name: max. ANameSize string
 * sections, arenas: AMap
 */
int
outputindex(Fmt *f, Index *ix)
{
	if(fmtprint(f, "%s\n%ud\n%s\n%ud\n", IndexMagic, ix->version, ix->name, ix->blocksize) < 0
	|| outputamap(f, ix->smap, ix->nsects) < 0
	|| outputamap(f, ix->amap, ix->narenas) < 0)
		return -1;
	return 0;
}

int
parseindex(IFile *f, Index *ix)
{
	AMapN amn;
	u32int v;
	char *s;

	/*
	 * magic
	 */
	s = ifileline(f);
	if(s == nil || strcmp(s, IndexMagic) != 0){
		seterr(ECorrupt, "bad index magic for %s", f->name);
		return -1;
	}

	/*
	 * version
	 */
	if(ifileu32int(f, &v) < 0){
		seterr(ECorrupt, "syntax error: bad version number in %s", f->name);
		return -1;
	}
	ix->version = v;
	if(ix->version != IndexVersion){
		seterr(ECorrupt, "bad version number in %s", f->name);
		return -1;
	}

	/*
	 * name
	 */
	if(ifilename(f, ix->name) < 0){
		seterr(ECorrupt, "syntax error: bad index name in %s", f->name);
		return -1;
	}

	/*
	 * block size
	 */
	if(ifileu32int(f, &v) < 0){
		seterr(ECorrupt, "syntax error: bad version number in %s", f->name);
		return -1;
	}
	ix->blocksize = v;

	if(parseamap(f, &amn) < 0)
		return -1;
	ix->nsects = amn.n;
	ix->smap = amn.map;

	if(parseamap(f, &amn) < 0)
		return -1;
	ix->narenas = amn.n;
	ix->amap = amn.map;

	return 0;
}

/*
 * initialize an entirely new index
 */
Index *
newindex(char *name, ISect **sects, int n)
{
	Index *ix;
	AMap *smap;
	u64int nb;
	u32int div, ub, xb, start, stop, blocksize, tabsize;
	int i, j;

	if(n < 1){
		seterr(EOk, "creating index with no index sections");
		return nil;
	}

	/*
	 * compute the total buckets available in the index,
	 * and the total buckets which are used.
	 */
	nb = 0;
	blocksize = sects[0]->blocksize;
	tabsize = sects[0]->tabsize;
	for(i = 0; i < n; i++){
		if(sects[i]->start != 0 || sects[i]->stop != 0
		|| sects[i]->index[0] != '\0'){
			seterr(EOk, "creating new index using non-empty section %s", sects[i]->name);
			return nil;
		}
		if(blocksize != sects[i]->blocksize){
			seterr(EOk, "mismatched block sizes in index sections");
			return nil;
		}
		if(tabsize != sects[i]->tabsize){
			seterr(EOk, "mismatched config table sizes in index sections");
			return nil;
		}
		nb += sects[i]->blocks;
	}

	/*
	 * check for duplicate names
	 */
	for(i = 0; i < n; i++){
		for(j = i + 1; j < n; j++){
			if(namecmp(sects[i]->name, sects[j]->name) == 0){
				seterr(EOk, "duplicate section name %s for index %s", sects[i]->name, name);
				return nil;
			}
		}
	}

	if(nb >= ((u64int)1 << 32)){
		seterr(EBug, "index too large");
		return nil;
	}
	div = (((u64int)1 << 32) + nb - 1) / nb;
	ub = (((u64int)1 << 32) - 1) / div + 1;
	if(div < 100){
		seterr(EBug, "index divisor too coarse");
		return nil;
	}
	if(ub > nb){
		seterr(EBug, "index initialization math wrong");
		return nil;
	}

	/*
	 * initialize each of the index sections
	 * and the section map table
	 */
	smap = MKNZ(AMap, n);
	if(smap == nil){
		seterr(EOk, "can't create new index: out of memory");
		return nil;
	}
	xb = nb - ub;
	start = 0;
	for(i = 0; i < n; i++){
		stop = start + sects[i]->blocks - xb / n;
		if(i == n - 1)
			stop = ub;
		sects[i]->start = start;
		sects[i]->stop = stop;
		namecp(sects[i]->index, name);

		smap[i].start = start;
		smap[i].stop = stop;
		namecp(smap[i].name, sects[i]->name);
		start = stop;
	}

	/*
	 * initialize the index itself
	 */
	ix = MKZ(Index);
	if(ix == nil){
		seterr(EOk, "can't create new index: out of memory");
		free(smap);
		return nil;
	}
	ix->version = IndexVersion;
	namecp(ix->name, name);
	ix->sects = sects;
	ix->smap = smap;
	ix->nsects = n;
	ix->blocksize = blocksize;
	ix->div = div;
	ix->buckets = ub;
	ix->tabsize = tabsize;
	return ix;
}

ISect*
initisect(Part *part)
{
	ISect *is;
	ZBlock *b;
	int ok;

	b = alloczblock(HeadSize, 0);
	if(b == nil || readpart(part, PartBlank, b->data, HeadSize) < 0){
		seterr(EAdmin, "can't read index section header: %r");
		return nil;
	}

	is = MKZ(ISect);
	if(is == nil){
		freezblock(b);
		return nil;
	}
	is->part = part;
	ok = unpackisect(is, b->data);
	freezblock(b);
	if(ok < 0){
		seterr(ECorrupt, "corrupted index section header: %r");
		freeisect(is);
		return nil;
	}

	if(is->version != ISectVersion){
		seterr(EAdmin, "unknown index section version %d", is->version);
		freeisect(is);
		return nil;
	}

	return initisect1(is);
}

ISect*
newisect(Part *part, char *name, u32int blocksize, u32int tabsize)
{
	ISect *is;
	u32int tabbase;

	is = MKZ(ISect);
	if(is == nil)
		return nil;

	namecp(is->name, name);
	is->version = ISectVersion;
	is->part = part;
	is->blocksize = blocksize;
	is->start = 0;
	is->stop = 0;
	tabbase = (PartBlank + HeadSize + blocksize - 1) & ~(blocksize - 1);
	is->blockbase = (tabbase + tabsize + blocksize - 1) & ~(blocksize - 1);
	is->blocks = is->part->size / blocksize - is->blockbase / blocksize;

	is = initisect1(is);
	if(is == nil)
		return nil;

	return is;
}

/*
 * initialize the computed paramaters for an index
 */
static ISect*
initisect1(ISect *is)
{
	u64int v;

	is->buckmax = (is->blocksize - IBucketSize) / IEntrySize;
	is->blocklog = u64log2(is->blocksize);
	if(is->blocksize != (1 << is->blocklog)){
		seterr(ECorrupt, "illegal non-power-of-2 bucket size %d\n", is->blocksize);
		freeisect(is);
		return nil;
	}
	partblocksize(is->part, is->blocksize);
	is->tabbase = (PartBlank + HeadSize + is->blocksize - 1) & ~(is->blocksize - 1);
	if(is->tabbase >= is->blockbase){
		seterr(ECorrupt, "index section config table overlaps bucket storage");
		freeisect(is);
		return nil;
	}
	is->tabsize = is->blockbase - is->tabbase;
	v = is->part->size & ~(u64int)(is->blocksize - 1);
	if(is->blockbase + (u64int)is->blocks * is->blocksize != v){
		seterr(ECorrupt, "invalid blocks in index section %s", is->name);
//ZZZZZZZZZ
//		freeisect(is);
//		return nil;
	}

	if(is->stop - is->start > is->blocks){
		seterr(ECorrupt, "index section overflows available space");
		freeisect(is);
		return nil;
	}
	if(is->start > is->stop){
		seterr(ECorrupt, "invalid index section range");
		freeisect(is);
		return nil;
	}

	return is;
}

int
wbisect(ISect *is)
{
	ZBlock *b;

	b = alloczblock(HeadSize, 1);
	if(b == nil)
//ZZZ set error?
		return -1;

	if(packisect(is, b->data) < 0){
		seterr(ECorrupt, "can't make index section header: %r");
		freezblock(b);
		return -1;
	}
	if(writepart(is->part, PartBlank, b->data, HeadSize) < 0){
		seterr(EAdmin, "can't write index section header: %r");
		freezblock(b);
		return -1;
	}
	freezblock(b);

	return 0;
}

void
freeisect(ISect *is)
{
	if(is == nil)
		return;
	free(is);
}

void
freeindex(Index *ix)
{
	int i;

	if(ix == nil)
		return;
	free(ix->amap);
	free(ix->arenas);
	if(ix->sects)
		for(i = 0; i < ix->nsects; i++)
			freeisect(ix->sects[i]);
	free(ix->sects);
	free(ix->smap);
	free(ix);
}

/*
 * write a clump to an available arena in the index
 * and return the address of the clump within the index.
ZZZ question: should this distinguish between an arena
filling up and real errors writing the clump?
 */
u64int
writeiclump(Index *ix, Clump *c, u8int *clbuf)
{
	u64int a;
	int i;

	for(i = ix->mapalloc; i < ix->narenas; i++){
		a = writeaclump(ix->arenas[i], c, clbuf);
		if(a != TWID64)
			return a + ix->amap[i].start;
	}

	seterr(EAdmin, "no space left in arenas");
	return TWID64;
}

/*
 * convert an arena index to an relative address address
 */
Arena*
amapitoa(Index *ix, u64int a, u64int *aa)
{
	int i, r, l, m;

	l = 1;
	r = ix->narenas - 1;
	while(l <= r){
		m = (r + l) / 2;
		if(ix->amap[m].start <= a)
			l = m + 1;
		else
			r = m - 1;
	}
	l--;

	if(a > ix->amap[l].stop){
for(i=0; i<ix->narenas; i++)
	print("arena %d: %llux - %llux\n", i, ix->amap[i].start, ix->amap[i].stop);
print("want arena %d for %llux\n", l, a);
		seterr(ECrash, "unmapped address passed to amapitoa");
		return nil;
	}

	if(ix->arenas[l] == nil){
		seterr(ECrash, "unmapped arena selected in amapitoa");
		return nil;
	}
	*aa = a - ix->amap[l].start;
	return ix->arenas[l];
}

int
iaddrcmp(IAddr *ia1, IAddr *ia2)
{
	return ia1->type != ia2->type
		|| ia1->size != ia2->size
		|| ia1->blocks != ia2->blocks
		|| ia1->addr != ia2->addr;
}

/*
 * lookup the score in the partition
 *
 * nothing needs to be explicitly locked:
 * only static parts of ix are used, and
 * the bucket is locked by the DBlock lock.
 */
int
loadientry(Index *ix, u8int *score, int type, IEntry *ie)
{
	ISect *is;
	DBlock *b;
	IBucket ib;
	u32int buck;
	int h, ok;

	buck = hashbits(score, 32) / ix->div;
	ok = -1;

	qlock(&stats.lock);
	stats.indexreads++;
	qunlock(&stats.lock);
	is = findibucket(ix, buck, &buck);
	if(is == nil)
		return -1;
	b = getdblock(is->part, is->blockbase + ((u64int)buck << is->blocklog), 1);
	if(b == nil)
		return -1;

	unpackibucket(&ib, b->data);
	if(okibucket(&ib, is) < 0)
		goto out;

	h = bucklook(score, type, ib.data, ib.n);
	if(h & 1){
		h ^= 1;
		unpackientry(ie, &ib.data[h]);
		ok = 0;
		goto out;
	}

out:
	putdblock(b);
	return ok;
}

/*
 * insert or update an index entry into the appropriate bucket
 */
int
storeientry(Index *ix, IEntry *ie)
{
	ISect *is;
	DBlock *b;
	IBucket ib;
	u32int buck;
	int h, ok;

	buck = hashbits(ie->score, 32) / ix->div;
	ok = 0;

	qlock(&stats.lock);
	stats.indexwreads++;
	qunlock(&stats.lock);

	is = findibucket(ix, buck, &buck);
	b = getdblock(is->part, is->blockbase + ((u64int)buck << is->blocklog), 1);
	if(b == nil)
		return -1;

	unpackibucket(&ib, b->data);
	if(okibucket(&ib, is) < 0)
		goto out;

	h = bucklook(ie->score, ie->ia.type, ib.data, ib.n);
	if(h & 1){
		h ^= 1;
		dirtydblock(b, DirtyIndex);
		packientry(ie, &ib.data[h]);
		ok = writebucket(is, buck, &ib, b);
		goto out;
	}

	if(ib.n < is->buckmax){
		dirtydblock(b, DirtyIndex);
		memmove(&ib.data[h + IEntrySize], &ib.data[h], ib.n * IEntrySize - h);
		ib.n++;

		packientry(ie, &ib.data[h]);
		ok = writebucket(is, buck, &ib, b);
		goto out;
	}

out:
	putdblock(b);
	return ok;
}

static int
writebucket(ISect *is, u32int buck, IBucket *ib, DBlock *b)
{
	assert(b->dirty == DirtyIndex);

	if(buck >= is->blocks){
		seterr(EAdmin, "index write out of bounds: %d >= %d\n",
				buck, is->blocks);
		return -1;
	}
	qlock(&stats.lock);
	stats.indexwrites++;
	qunlock(&stats.lock);
	packibucket(ib, b->data);
	// return writepart(is->part, is->blockbase + ((u64int)buck << is->blocklog), b->data, is->blocksize);
	return 0;
}

/*
 * find the number of the index section holding score
 */
int
indexsect(Index *ix, u8int *score)
{
	u32int buck;
	int r, l, m;

	buck = hashbits(score, 32) / ix->div;
	l = 1;
	r = ix->nsects - 1;
	while(l <= r){
		m = (r + l) >> 1;
		if(ix->sects[m]->start <= buck)
			l = m + 1;
		else
			r = m - 1;
	}
	return l - 1;
}

/*
 * find the index section which holds bucket #buck.
 */
static ISect*
findisect(Index *ix, u32int buck, u32int *ibuck)
{
	ISect *is;
	int r, l, m;

	l = 1;
	r = ix->nsects - 1;
	while(l <= r){
		m = (r + l) >> 1;
		if(ix->sects[m]->start <= buck)
			l = m + 1;
		else
			r = m - 1;
	}
	is = ix->sects[l - 1];
	if(is->start <= buck && is->stop > buck){
		*ibuck = buck - is->start;
		return is;
	}
	seterr(EAdmin, "index lookup out of range: %ud not found in index\n", buck);
	return nil;
}

static DBlock*
loadisectblock(Index *ix, u32int buck, int read)
{
	ISect *is;

	if((is = findisect(ix, buck, &buck)) == nil)
		return nil;
	return getdblock(is->part, is->blockbase + ((u64int)buck << is->blocklog), read);
}

/*
 * find the index section which holds the logical bucket #buck
 */
static DBlock*
loadibucket(Index *ix, u32int buck, IBucket *ib)
{
	int d, i, times;
	u32int ino;
	DBlock *b;
	u32int bbuck;
	IBucket eib;

	times = 0;

top:
	if(times++ > 2*ix->maxdepth){
		seterr(EAdmin, "bucket bitmap tree never converges with buckets");
		return nil;
	}

	bbuck = -1;
	b = nil;

	/*
	 * consider the bits of buck, one at a time, to make the bucket number.
	 */

	/*
	 * walk down the bucket tree using the bitmap, which is used so
	 * often it's almost certain to be in cache.
	 */
	ino = 0;
	for(d=0; d<ix->maxdepth; d++){
		/* fetch the bitmap that says whether ino has been split */
		if(bbuck != (ino>>ix->bitlog)){
			if(b)
				putdblock(b);
			bbuck = (ino>>ix->bitlog);
			if((b = loadisectblock(ix, bbuck, 1)) == nil)
				return nil;
		}
		/* has it been split yet? */
		if((((u32int*)b->data)[(ino&(ix->bitmask))>>5] & (1<<(ino&31))) == 0){
			/* no.  we're done */
			break;
		}
	}
	putdblock(b);

	/*
	 * continue walking down (or up!) the bucket tree, which may not
	 * be completely in sync with the bitmap.  we could continue the loop
	 * here, but it's easiest just to start over once we correct the bitmap.
	 * corrections should only happen when things get out of sync because
	 * a crash keeps some updates from making it to disk, so it's not too
	 * frequent.  we should converge after 2x the max depth, at the very worst
	 * (up and back down the tree).
	 */
	if((b = loadisectblock(ix, ix->bitbuckets+bucketno(buck, d), 1)) == nil)
		return nil;
	unpackibucket(&eib, b->data);
	if(eib.depth > d){
		/* the bitmap thought this block hadn't split */
		putdblock(b);
		if(markblocksplit(buck, d) < 0)
			return nil;
		goto top;
	}
	if(eib.depth < d){
		/* the bitmap thought this block had split */
		putdblock(b);
		if(markblockunsplit(ix, buck, d) < 0)
			return nil;
		goto top;
	}
	*ib = eib;
	return b;
}

static int
markblocksplit(Index *ix, u32int buck, int d)
{
	u32int ino;

	ino = bucketno(buck, d);
	if((b = loadisectblock(ix, ino>>ix->bitlog, 1)) == nil)
		return -1;
	dirtydblock(b, DirtyIndex);
	(((u32int*)b->data)[(ino&(ix->bitmask))>>5] |= (1<<(ino&31));
	putdblock(b);
	return 0;
}

static int
markblockunsplit(Index *ix, u32int buck, int d)
{
	/*
	 * Let's 
	u32int ino;

	ino = bucketno(buck, d);
	
}

static int
okibucket(IBucket *ib, ISect *is)
{
	if(ib->n <= is->buckmax && (ib->next == 0 || ib->next >= is->start && ib->next < is->stop))
		return 0;

	seterr(EICorrupt, "corrupted disk index bucket: n=%ud max=%ud, next=%lud range=[%lud,%lud)",
		ib->n, is->buckmax, ib->next, is->start, is->stop);
	return -1;
}

/*
 * look for score within data;
 * return 1 | byte index of matching index,
 * or 0 | index of least element > score
 */
static int
bucklook(u8int *score, int otype, u8int *data, int n)
{
	int i, r, l, m, h, c, cc, type;

	type = vttodisktype(otype);
	l = 0;
	r = n - 1;
	while(l <= r){
		m = (r + l) >> 1;
		h = m * IEntrySize;
		for(i = 0; i < VtScoreSize; i++){
			c = score[i];
			cc = data[h + i];
			if(c != cc){
				if(c > cc)
					l = m + 1;
				else
					r = m - 1;
				goto cont;
			}
		}
		cc = data[h + IEntryTypeOff];
		if(type != cc){
			if(type > cc)
				l = m + 1;
			else
				r = m - 1;
			goto cont;
		}
		return h | 1;
	cont:;
	}

	return l * IEntrySize;
}

/*
 * compare two IEntries; consistent with bucklook
 */
int
ientrycmp(const void *vie1, const void *vie2)
{
	u8int *ie1, *ie2;
	int i, v1, v2;

	ie1 = (u8int*)vie1;
	ie2 = (u8int*)vie2;
	for(i = 0; i < VtScoreSize; i++){
		v1 = ie1[i];
		v2 = ie2[i];
		if(v1 != v2){
			if(v1 < v2)
				return -1;
			return 0;
		}
	}
	v1 = ie1[IEntryTypeOff];
	v2 = ie2[IEntryTypeOff];
	if(v1 != v2){
		if(v1 < v2)
			return -1;
		return 0;
	}
	return -1;
}