1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
|
<head>
<title>map(1) - Plan 9 from User Space</title>
<meta content="text/html; charset=utf-8" http-equiv=Content-Type>
</head>
<body bgcolor=#ffffff>
<table border=0 cellpadding=0 cellspacing=0 width=100%>
<tr height=10><td>
<tr><td width=20><td>
<tr><td width=20><td><b>MAP(1)</b><td align=right><b>MAP(1)</b>
<tr><td width=20><td colspan=2>
<br>
<p><font size=+1><b>NAME </b></font><br>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
map, mapdemo, mapd – draw maps on various projections<br>
</table>
<p><font size=+1><b>SYNOPSIS </b></font><br>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
<tt><font size=+1>map</font></tt> <i>projection</i> [ <i>option ...</i> ]
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
<tt><font size=+1>mapdemo
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
</font></tt>
</table>
<p><font size=+1><b>DESCRIPTION </b></font><br>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
<i>Map</i> prepares on the standard output a map suitable for display
by any plotting filter described in <a href="../man1/plot.html"><i>plot</i>(1)</a>. A menu of projections
is produced in response to an unknown <i>projection</i>. <i>Mapdemo</i> is a
short course in mapping.
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
The default data for <i>map</i> are world shorelines. Option <tt><font size=+1>−f</font></tt> accesses
more detailed data classified by feature.<br>
<tt><font size=+1>−f</font></tt> [ <i>feature</i> ... ]<br>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
Features are ranked 1 (default) to 4 from major to minor. Higher-numbered
ranks include all lower-numbered ones. Features are<br>
<tt><font size=+1>shore</font></tt>[<tt><font size=+1>1</font></tt>-<tt><font size=+1>4</font></tt>] seacoasts, lakes, and islands; option <tt><font size=+1>−f</font></tt> always shows
<tt><font size=+1>shore1<br>
ilake</font></tt>[<tt><font size=+1>1</font></tt>-<tt><font size=+1>2</font></tt>] intermittent lakes<br>
<tt><font size=+1>river</font></tt>[<tt><font size=+1>1</font></tt>-<tt><font size=+1>4</font></tt>] rivers<br>
<tt><font size=+1>iriver</font></tt>[<tt><font size=+1>1</font></tt>-<tt><font size=+1>3</font></tt>] intermittent rivers<br>
<tt><font size=+1>canal</font></tt>[<tt><font size=+1>1</font></tt>-<tt><font size=+1>3</font></tt>]<tt><font size=+1> 3</font></tt>=irrigation canals<br>
<tt><font size=+1>glacier<br>
iceshelf</font></tt>[<tt><font size=+1>12</font></tt>]<br>
<tt><font size=+1>reef<br>
saltpan</font></tt>[<tt><font size=+1>12</font></tt>]<br>
<tt><font size=+1>country</font></tt>[<tt><font size=+1>1</font></tt>-<tt><font size=+1>3</font></tt>]<tt><font size=+1> 2</font></tt>=disputed boundaries, <tt><font size=+1>3</font></tt>=indefinite boundaries<br>
<tt><font size=+1>state</font></tt> states and provinces (US and Canada only)<br>
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
</table>
In other options coordinates are in degrees, with north latitude
and west longitude counted as positive.<br>
<tt><font size=+1>−l</font></tt> <i>S N E W<br>
</i>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
Set the southern and northern latitude and the eastern and western
longitude limits. Missing arguments are filled out from the list
–90, 90, –180, 180, or lesser limits suitable to the projection
at hand.<br>
</table>
<tt><font size=+1>−k</font></tt> <i>S N E W<br>
</i>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
Set the scale as if for a map with limits <tt><font size=+1>−l</font></tt> <i>S N E W</i> . Do not
consider any <tt><font size=+1>−l</font></tt> or <tt><font size=+1>−w</font></tt> option in setting scale.<br>
</table>
<tt><font size=+1>−o</font></tt> <i>lat lon rot<br>
</i>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
Orient the map in a nonstandard position. Imagine a transparent
gridded sphere around the globe. Turn the overlay about the North
Pole so that the Prime Meridian (longitude 0) of the overlay coincides
with meridian <i>lon</i> on the globe. Then tilt the North Pole of the
overlay along its Prime Meridian to latitude <i>lat
</i>on the globe. Finally again turn the overlay about its ‘North
Pole’ so that its Prime Meridian coincides with the previous position
of meridian <i>rot</i>. Project the map in the standard form appropriate
to the overlay, but presenting information from the underlying
globe. Missing arguments are filled out from the list
90, 0, 0. In the absence of <tt><font size=+1>−</font></tt>o<tt><font size=+1>,</font></tt> the orientation is 90, 0, <i>m</i>, where
<i>m</i> is the middle of the longitude range.<br>
</table>
<tt><font size=+1>−w</font></tt> <i>S N E W<br>
</i>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
Window the map by the specified latitudes and longitudes in the
tilted, rotated coordinate system. Missing arguments are filled
out from the list –90, 90, –180, 180. (It is wise to give an encompassing
<tt><font size=+1>−l</font></tt> option with <tt><font size=+1>−w</font></tt>. Otherwise for small windows computing time
varies inversely with area!)
</table>
<tt><font size=+1>−d</font></tt> <i>n</i> For speed, plot only every <i>n</i>th point.<br>
<tt><font size=+1>−r</font></tt> Reverse left and right (good for star charts and inside-out
views).<br>
<tt><font size=+1>−v</font></tt> Verso. Switch to a normally suppressed sheet of the map, such
as the back side of the earth in orthographic projection.<br>
<tt><font size=+1>−s1<br>
−s2</font></tt> Superpose; outputs for a <tt><font size=+1>−s1</font></tt> map (no closing) and a <tt><font size=+1>−s2</font></tt> map
(no opening) may be concatenated.<br>
<tt><font size=+1>−g</font></tt> <i>dlat dlon res<br>
</i>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
Grid spacings are <i>dlat</i>, <i>dlon</i>. Zero spacing means no grid. Missing
<i>dlat</i> is taken to be zero. Missing <i>dlon</i> is taken the same as <i>dlat</i>.
Grid lines are drawn to a resolution of <i>res</i> (2° or less by default).
In the absence of <tt><font size=+1>−</font></tt>g<tt><font size=+1>,</font></tt> grid spacing is 10°.<br>
</table>
<tt><font size=+1>−p</font></tt> <i>lat lon extent<br>
</i>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
Position the point <i>lat, lon</i> at the center of the plotting area.
Scale the map so that the height (and width) of the nominal plotting
area is <i>extent</i> times the size of one degree of latitude at the
center. By default maps are scaled and positioned to fit within
the plotting area. An <i>extent</i> overrides option <tt><font size=+1>−k</font></tt>.
</table>
<tt><font size=+1>−c</font></tt> <i>x y rot<br>
</i>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
After all other positioning and scaling operations have been performed,
rotate the image <i>rot</i> degrees counterclockwise about the center
and move the center to position <i>x</i>, <i>y</i>, where the nominal plotting
area is –1≤<i>x</i>≤1, –1≤<i>y</i>≤1. Missing arguments are taken to be 0. <tt><font size=+1>−x</font></tt> Allow
the map to extend outside the
nominal plotting area.<br>
</table>
<tt><font size=+1>−m</font></tt> [ <i>file</i> ... ]<br>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
Use map data from named files. If no files are named, omit map
data. Names that do not exist as pathnames are looked up in a
standard directory, which contains, in addition to the data for
<tt><font size=+1>−f</font></tt>,<br>
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
<tt><font size=+1>world</font></tt> World Data Bank I (default)<br>
<tt><font size=+1>states</font></tt> US map from Census Bureau<br>
<tt><font size=+1>counties</font></tt> US map from Census Bureau<br>
The environment variables <tt><font size=+1>MAP</font></tt> and <tt><font size=+1>MAPDIR</font></tt> change the default map
and default directory.<br>
</table>
<tt><font size=+1>−b</font></tt> [<i>lat0 lon0 lat1 lon1</i>... ]<br>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
Suppress the drawing of the normal boundary (defined by options
<tt><font size=+1>−l</font></tt> and <tt><font size=+1>−w</font></tt>). Coordinates, if present, define the vertices of a
polygon to which the map is clipped. If only two vertices are
given, they are taken to be the diagonal of a rectangle. To draw
the polygon, give its vertices as a <tt><font size=+1>−u</font></tt> track.
</table>
<tt><font size=+1>−t</font></tt> <i>file ...<br>
</i>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
The <i>files</i> contain lists of points, given as latitude-longitude
pairs in degrees. If the first file is named <tt><font size=+1>−</font></tt>, the standard input
is taken instead. The points of each list are plotted as connected
‘tracks’.<br>
Points in a track file may be followed by label strings. A label
breaks the track. A label may be prefixed by <tt><font size=+1>"</font></tt>, <tt><font size=+1>:</font></tt>, or <tt><font size=+1>!</font></tt> and is
terminated by a newline. An unprefixed string or a string prefixed
with <tt><font size=+1>"</font></tt> is displayed at the designated point. The first word of
a <tt><font size=+1>:</font></tt> or <tt><font size=+1>!</font></tt> string names a special symbol (see option <tt><font size=+1>−y</font></tt>).
An optional numerical second word is a scale factor for the size
of the symbol, 1 by default. A <tt><font size=+1>:</font></tt> symbol is aligned with its top
to the north; a <tt><font size=+1>!</font></tt> symbol is aligned vertically on the page.<br>
</table>
<tt><font size=+1>−u</font></tt> <i>file ...<br>
</i>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
Same as <tt><font size=+1>−t</font></tt>, except the tracks are unbroken lines. (<tt><font size=+1>−t</font></tt> tracks appear
as dot-dashed lines if the plotting filter supports them.)<br>
</table>
<tt><font size=+1>−y</font></tt> <i>file<br>
</i>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
The <i>file</i> contains <a href="../man7/plot.html"><i>plot</i>(7)</a>-style data for <tt><font size=+1>:</font></tt> or <tt><font size=+1>!</font></tt> labels in <tt><font size=+1>−t</font></tt> or
<tt><font size=+1>−u</font></tt> files. Each symbol is defined by a comment <tt><font size=+1>:</font></tt><i>name</i> then a sequence
of <tt><font size=+1>m</font></tt> and <tt><font size=+1>v</font></tt> commands. Coordinates (0,0) fall on the plotting point.
Default scaling is as if the nominal plotting range were <tt><font size=+1>ra −1
−1 1 1</font></tt>; <tt><font size=+1>ra</font></tt> commands in <i>file</i> change the
scaling.<br>
</table>
<p><font size=+1><b>Projections </b></font><br>
Equatorial projections centered on the Prime Meridian (longitude
0). Parallels are straight horizontal lines.
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
<tt><font size=+1>mercator</font></tt> equally spaced straight meridians, conformal, straight
compass courses<br>
<tt><font size=+1>sinusoidal</font></tt> equally spaced parallels, equal-area, same as <tt><font size=+1>bonne
0</font></tt>.<br>
<tt><font size=+1>cylequalarea</font></tt> <i>lat0</i> equally spaced straight meridians, equal-area,
true scale on <i>lat0<br>
</i><tt><font size=+1>cylindrical</font></tt> central projection on tangent cylinder<br>
<tt><font size=+1>rectangular</font></tt> <i>lat0</i> equally spaced parallels, equally spaced straight
meridians, true scale on <i>lat0<br>
</i><tt><font size=+1>gall</font></tt> <i>lat0</i> parallels spaced stereographically on prime meridian,
equally spaced straight meridians, true scale on <i>lat0<br>
</i><tt><font size=+1>mollweide</font></tt> (homalographic) equal-area, hemisphere is a circle<br>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
<tt><font size=+1>gilbert()</font></tt> sphere conformally mapped on hemisphere and viewed orthographically<br>
</table>
</table>
<tt><font size=+1>gilbert</font></tt> globe mapped conformally on hemisphere, viewed orthographically
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
Azimuthal projections centered on the North Pole. Parallels are
concentric circles. Meridians are equally spaced radial lines.
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
<tt><font size=+1>azequidistant</font></tt> equally spaced parallels, true distances from pole<br>
<tt><font size=+1>azequalarea</font></tt> equal-area<br>
<tt><font size=+1>gnomonic</font></tt> central projection on tangent plane, straight great circles<br>
<tt><font size=+1>perspective</font></tt> <i>dist</i> viewed along earth’s axis <i>dist</i> earth radii from
center of earth<br>
<tt><font size=+1>orthographic</font></tt> viewed from infinity<br>
<tt><font size=+1>stereographic</font></tt> conformal, projected from opposite pole<br>
<tt><font size=+1>laue</font></tt><i>radius</i> = tan(2×<i>colatitude</i>), used in X-ray crystallography<br>
<tt><font size=+1>fisheye</font></tt> <i>n</i> stereographic seen from just inside medium with refractive
index <i>n<br>
</i><tt><font size=+1>newyorker</font></tt> <i>rradius</i> = log(<i>colatitude</i>/<i>r</i>): <i>New Yorker</i> map from viewing
pedestal of radius <i>r</i> degrees
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
Polar conic projections symmetric about the Prime Meridian. Parallels
are segments of concentric circles. Except in the Bonne projection,
meridians are equally spaced radial lines orthogonal to the parallels.
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
<tt><font size=+1>conic</font></tt> <i>lat0</i> central projection on cone tangent at <i>lat0<br>
</i><tt><font size=+1>simpleconic</font></tt> <i>lat0 lat1<br>
</i>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
equally spaced parallels, true scale on <i>lat0</i> and <i>lat1<br>
</i>
</table>
</table>
<tt><font size=+1>lambert</font></tt> <i>lat0 lat1</i> conformal, true scale on <i>lat0</i> and <i>lat1<br>
</i><tt><font size=+1>albers</font></tt> <i>lat0 lat1</i> equal-area, true scale on <i>lat0</i> and <i>lat1<br>
</i><tt><font size=+1>bonne</font></tt> <i>lat0</i> equally spaced parallels, equal-area, parallel <i>lat0</i>
developed from tangent cone
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
Projections with bilateral symmetry about the Prime Meridian and
the equator.
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
<tt><font size=+1>polyconic</font></tt> parallels developed from tangent cones, equally spaced
along Prime Meridian<br>
<tt><font size=+1>aitoff</font></tt> equal-area projection of globe onto 2-to-1 ellipse, based
on <i>azequalarea<br>
</i><tt><font size=+1>lagrange</font></tt> conformal, maps whole sphere into a circle<br>
<tt><font size=+1>bicentric</font></tt> <i>lon0</i> points plotted at true azimuth from two centers
on the equator at longitudes <i>±lon0</i>, great circles are straight
lines (a stretched <i>gnomonic</i> )<br>
<tt><font size=+1>elliptic</font></tt> <i>lon0</i> points plotted at true distance from two centers
on the equator at longitudes <i>±lon0<br>
</i><tt><font size=+1>globular</font></tt> hemisphere is circle, circular arc meridians equally spaced
on equator, circular arc parallels equally spaced on 0- and 90-degree
meridians<br>
<tt><font size=+1>vandergrinten</font></tt> sphere is circle, meridians as in <i>globular</i>, circular
arc parallels resemble <i>mercator
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
</i>
Doubly periodic conformal projections.
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
<tt><font size=+1>guyou</font></tt> W and E hemispheres are square<br>
<tt><font size=+1>square</font></tt> world is square with Poles at diagonally opposite corners<br>
<tt><font size=+1>tetra</font></tt> map on tetrahedron with edge tangent to Prime Meridian at
S Pole, unfolded into equilateral triangle<br>
<tt><font size=+1>hex</font></tt> world is hexagon centered on N Pole, N and S hemispheres are
equilateral triangles
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
Miscellaneous projections.
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
<tt><font size=+1>harrison</font></tt> <i>dist angle</i>oblique perspective from above the North Pole,
<i>dist</i> earth radii from center of earth, looking along the Date
Line <i>angle</i> degrees off vertical<br>
<tt><font size=+1>trapezoidal</font></tt> <i>lat0 lat1<br>
</i>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
equally spaced parallels, straight meridians equally spaced along
parallels, true scale at <i>lat0</i> and <i>lat1</i> on Prime Meridian<br>
<tt><font size=+1>lune(lat,angle)</font></tt> conformal, polar cap above latitude <i>lat</i> maps to
convex lune with given <i>angle</i> at 90°E and 90°W
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
</table>
</table>
Retroazimuthal projections. At every point the angle between vertical
and a straight line to ‘Mecca’, latitude <i>lat0</i> on the prime meridian,
is the true bearing of Mecca.
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
<tt><font size=+1>mecca</font></tt> <i>lat0</i> equally spaced vertical meridians<br>
<tt><font size=+1>homing</font></tt> <i>lat0</i> distances to Mecca are true
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
Maps based on the spheroid. Of geodetic quality, these projections
do not make sense for tilted orientations. For descriptions, see
corresponding maps above.
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
<tt><font size=+1>sp_mercator<br>
sp_albers</font></tt> <i>lat0 lat1<br>
</i>
</table>
<p><font size=+1><b>EXAMPLES </b></font><br>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
<tt><font size=+1>map perspective 1.025 −o 40.75 74<br>
</font></tt>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
A view looking down on New York from 100 miles (0.025 of the 4000-mile
earth radius) up. The job can be done faster by limiting the map
so as not to ‘plot’ the invisible part of the world: <tt><font size=+1>map perspective
1.025 −o 40.75 74 −l 20 60 30 100</font></tt>. A circular border can be forced
by adding option
<tt><font size=+1>−w 77.33</font></tt>. (Latitude 77.33° falls just inside a polar cap of opening
angle arccos(1/1.025) = 12.6804°.)<br>
</table>
<tt><font size=+1>map mercator −o 49.25 −106 180<br>
</font></tt>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
An ‘equatorial’ map of the earth centered on New York. The pole
of the map is placed 90° away (40.75+49.25=90) on the other side
of the earth. A 180° twist around the pole of the map arranges
that the ‘Prime Meridian’ of the map runs from the pole of the
map over the North Pole to New York instead of
down the back side of the earth. The same effect can be had from
<tt><font size=+1> map mercator −o 130.75 74<br>
</font></tt>
</table>
<tt><font size=+1>map albers 28 45 −l 20 50 60 130 −m states<br>
</font></tt>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
A customary curved-latitude map of the United States.<br>
</table>
<tt><font size=+1>map harrison 2 30 −l −90 90 120 240 −o 90 0 0<br>
</font></tt>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
A fan view covering 60° on either side of the Date Line, as seen
from one earth radius above the North Pole gazing at the earth’s
limb, which is 30° off vertical. The <tt><font size=+1>−o</font></tt> option overrides the default
<tt><font size=+1>−o 90 0 180</font></tt>, which would rotate the scene to behind the observer.<br>
</table>
</table>
<p><font size=+1><b>FILES </b></font><br>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
<tt><font size=+1>/lib/map/[1−4]??</font></tt> World Data Bank II, for <tt><font size=+1>−f<br>
/lib/map/*</font></tt> maps for <tt><font size=+1>−m<br>
/lib/map/*.x</font></tt> map indexes<br>
<tt><font size=+1>mapd</font></tt> Map driver program<br>
</table>
<p><font size=+1><b>SOURCE </b></font><br>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
<tt><font size=+1>/usr/local/plan9/src/cmd/map<br>
</font></tt>
</table>
<p><font size=+1><b>SEE ALSO </b></font><br>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
<a href="../man7/map.html"><i>map</i>(7)</a>, <a href="../man1/plot.html"><i>plot</i>(1)</a><br>
</table>
<p><font size=+1><b>DIAGNOSTICS </b></font><br>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
‘Map seems to be empty’--a coarse survey found zero extent within
the <tt><font size=+1>−l</font></tt> and <tt><font size=+1>−w</font></tt> bounds; for maps of limited extent the grid resolution,
<i>res</i>, or the limits may have to be refined.<br>
</table>
<p><font size=+1><b>BUGS </b></font><br>
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
Windows (option <tt><font size=+1>−w</font></tt>) cannot cross the Date Line. No borders appear
along edges arising from visibility limits. Segments that cross
a border are dropped, not clipped. Excessively large scale or
<tt><font size=+1>−d</font></tt> setting may cause long line segments to be dropped. <i>Map</i> tries
to draw grid lines dotted and <tt><font size=+1>−t</font></tt> tracks dot-dashed. As
very few plotting filters properly support curved textured lines,
these lines are likely to appear solid. The west-longitude-positive
convention betrays Yankee chauvinism. <i>Gilbert</i> should be a map
from sphere to sphere, independent of the mapping from sphere
to plane.<br>
</table>
<td width=20>
<tr height=20><td>
</table>
<!-- TRAILER -->
<table border=0 cellpadding=0 cellspacing=0 width=100%>
<tr height=15><td width=10><td><td width=10>
<tr><td><td>
<center>
<a href="../../"><img src="../../dist/spaceglenda100.png" alt="Space Glenda" border=1></a>
</center>
</table>
<!-- TRAILER -->
</body></html>
|